File:  [local] / rpl / lapack / lapack / zsytri_rook.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:24:37 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack vers la version 3.5.0.

    1: *> \brief \b ZSYTRI_ROOK
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZSYTRI_ROOK + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytri_rook.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytri_rook.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytri_rook.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), WORK( * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSYTRI_ROOK computes the inverse of a complex symmetric
   39: *> matrix A using the factorization A = U*D*U**T or A = L*D*L**T
   40: *> computed by ZSYTRF_ROOK.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in,out] A
   62: *> \verbatim
   63: *>          A is COMPLEX*16 array, dimension (LDA,N)
   64: *>          On entry, the block diagonal matrix D and the multipliers
   65: *>          used to obtain the factor U or L as computed by ZSYTRF_ROOK.
   66: *>
   67: *>          On exit, if INFO = 0, the (symmetric) inverse of the original
   68: *>          matrix.  If UPLO = 'U', the upper triangular part of the
   69: *>          inverse is formed and the part of A below the diagonal is not
   70: *>          referenced; if UPLO = 'L' the lower triangular part of the
   71: *>          inverse is formed and the part of A above the diagonal is
   72: *>          not referenced.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges and the block structure of D
   85: *>          as determined by ZSYTRF_ROOK.
   86: *> \endverbatim
   87: *>
   88: *> \param[out] WORK
   89: *> \verbatim
   90: *>          WORK is COMPLEX*16 array, dimension (N)
   91: *> \endverbatim
   92: *>
   93: *> \param[out] INFO
   94: *> \verbatim
   95: *>          INFO is INTEGER
   96: *>          = 0: successful exit
   97: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   98: *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
   99: *>               inverse could not be computed.
  100: *> \endverbatim
  101: *
  102: *  Authors:
  103: *  ========
  104: *
  105: *> \author Univ. of Tennessee 
  106: *> \author Univ. of California Berkeley 
  107: *> \author Univ. of Colorado Denver 
  108: *> \author NAG Ltd. 
  109: *
  110: *> \date November 2011
  111: *
  112: *> \ingroup complex16SYcomputational
  113: *
  114: *> \par Contributors:
  115: *  ==================
  116: *>
  117: *> \verbatim
  118: *>
  119: *>   November 2011, Igor Kozachenko,
  120: *>                  Computer Science Division,
  121: *>                  University of California, Berkeley
  122: *>
  123: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  124: *>                  School of Mathematics,
  125: *>                  University of Manchester
  126: *>
  127: *> \endverbatim
  128: *
  129: *  =====================================================================
  130:       SUBROUTINE ZSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
  131: *
  132: *  -- LAPACK computational routine (version 3.4.0) --
  133: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  134: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  135: *     November 2011
  136: *
  137: *     .. Scalar Arguments ..
  138:       CHARACTER          UPLO
  139:       INTEGER            INFO, LDA, N
  140: *     ..
  141: *     .. Array Arguments ..
  142:       INTEGER            IPIV( * )
  143:       COMPLEX*16         A( LDA, * ), WORK( * )
  144: *     ..
  145: *
  146: *  =====================================================================
  147: *
  148: *     .. Parameters ..
  149:       COMPLEX*16         CONE, CZERO
  150:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
  151:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
  152: *     ..
  153: *     .. Local Scalars ..
  154:       LOGICAL            UPPER
  155:       INTEGER            K, KP, KSTEP
  156:       COMPLEX*16         AK, AKKP1, AKP1, D, T, TEMP
  157: *     ..
  158: *     .. External Functions ..
  159:       LOGICAL            LSAME
  160:       COMPLEX*16         ZDOTU
  161:       EXTERNAL           LSAME, ZDOTU
  162: *     ..
  163: *     .. External Subroutines ..
  164:       EXTERNAL           ZCOPY, ZSWAP, ZSYMV, XERBLA
  165: *     ..
  166: *     .. Intrinsic Functions ..
  167:       INTRINSIC          MAX
  168: *     ..
  169: *     .. Executable Statements ..
  170: *
  171: *     Test the input parameters.
  172: *
  173:       INFO = 0
  174:       UPPER = LSAME( UPLO, 'U' )
  175:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  176:          INFO = -1
  177:       ELSE IF( N.LT.0 ) THEN
  178:          INFO = -2
  179:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  180:          INFO = -4
  181:       END IF
  182:       IF( INFO.NE.0 ) THEN
  183:          CALL XERBLA( 'ZSYTRI_ROOK', -INFO )
  184:          RETURN
  185:       END IF
  186: *
  187: *     Quick return if possible
  188: *
  189:       IF( N.EQ.0 )
  190:      $   RETURN
  191: *
  192: *     Check that the diagonal matrix D is nonsingular.
  193: *
  194:       IF( UPPER ) THEN
  195: *
  196: *        Upper triangular storage: examine D from bottom to top
  197: *
  198:          DO 10 INFO = N, 1, -1
  199:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  200:      $         RETURN
  201:    10    CONTINUE
  202:       ELSE
  203: *
  204: *        Lower triangular storage: examine D from top to bottom.
  205: *
  206:          DO 20 INFO = 1, N
  207:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  208:      $         RETURN
  209:    20    CONTINUE
  210:       END IF
  211:       INFO = 0
  212: *
  213:       IF( UPPER ) THEN
  214: *
  215: *        Compute inv(A) from the factorization A = U*D*U**T.
  216: *
  217: *        K is the main loop index, increasing from 1 to N in steps of
  218: *        1 or 2, depending on the size of the diagonal blocks.
  219: *
  220:          K = 1
  221:    30    CONTINUE
  222: *
  223: *        If K > N, exit from loop.
  224: *
  225:          IF( K.GT.N )
  226:      $      GO TO 40
  227: *
  228:          IF( IPIV( K ).GT.0 ) THEN
  229: *
  230: *           1 x 1 diagonal block
  231: *
  232: *           Invert the diagonal block.
  233: *
  234:             A( K, K ) = CONE / A( K, K )
  235: *
  236: *           Compute column K of the inverse.
  237: *
  238:             IF( K.GT.1 ) THEN
  239:                CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  240:                CALL ZSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
  241:      $                     A( 1, K ), 1 )
  242:                A( K, K ) = A( K, K ) - ZDOTU( K-1, WORK, 1, A( 1, K ),
  243:      $                     1 )
  244:             END IF
  245:             KSTEP = 1
  246:          ELSE
  247: *
  248: *           2 x 2 diagonal block
  249: *
  250: *           Invert the diagonal block.
  251: *
  252:             T = A( K, K+1 )
  253:             AK = A( K, K ) / T
  254:             AKP1 = A( K+1, K+1 ) / T
  255:             AKKP1 = A( K, K+1 ) / T
  256:             D = T*( AK*AKP1-CONE )
  257:             A( K, K ) = AKP1 / D
  258:             A( K+1, K+1 ) = AK / D
  259:             A( K, K+1 ) = -AKKP1 / D
  260: *
  261: *           Compute columns K and K+1 of the inverse.
  262: *
  263:             IF( K.GT.1 ) THEN
  264:                CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  265:                CALL ZSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
  266:      $                     A( 1, K ), 1 )
  267:                A( K, K ) = A( K, K ) - ZDOTU( K-1, WORK, 1, A( 1, K ),
  268:      $                     1 )
  269:                A( K, K+1 ) = A( K, K+1 ) -
  270:      $                       ZDOTU( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
  271:                CALL ZCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
  272:                CALL ZSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
  273:      $                     A( 1, K+1 ), 1 )
  274:                A( K+1, K+1 ) = A( K+1, K+1 ) -
  275:      $                         ZDOTU( K-1, WORK, 1, A( 1, K+1 ), 1 )
  276:             END IF
  277:             KSTEP = 2
  278:          END IF
  279: *
  280:          IF( KSTEP.EQ.1 ) THEN
  281: *
  282: *           Interchange rows and columns K and IPIV(K) in the leading
  283: *           submatrix A(1:k+1,1:k+1)
  284: *
  285:             KP = IPIV( K )
  286:             IF( KP.NE.K ) THEN
  287:                IF( KP.GT.1 )
  288:      $             CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  289:                CALL ZSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  290:                TEMP = A( K, K )
  291:                A( K, K ) = A( KP, KP )
  292:                A( KP, KP ) = TEMP
  293:             END IF
  294:          ELSE
  295: *
  296: *           Interchange rows and columns K and K+1 with -IPIV(K) and
  297: *           -IPIV(K+1)in the leading submatrix A(1:k+1,1:k+1)
  298: *
  299:             KP = -IPIV( K )
  300:             IF( KP.NE.K ) THEN
  301:                IF( KP.GT.1 )
  302:      $            CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  303:                CALL ZSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  304: *               
  305:                TEMP = A( K, K )
  306:                A( K, K ) = A( KP, KP )
  307:                A( KP, KP ) = TEMP
  308:                TEMP = A( K, K+1 )
  309:                A( K, K+1 ) = A( KP, K+1 )
  310:                A( KP, K+1 ) = TEMP
  311:             END IF
  312: *
  313:             K = K + 1
  314:             KP = -IPIV( K )
  315:             IF( KP.NE.K ) THEN
  316:                IF( KP.GT.1 )
  317:      $            CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  318:                CALL ZSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  319:                TEMP = A( K, K )
  320:                A( K, K ) = A( KP, KP )
  321:                A( KP, KP ) = TEMP
  322:             END IF
  323:          END IF
  324: *
  325:          K = K + 1
  326:          GO TO 30
  327:    40    CONTINUE
  328: *
  329:       ELSE
  330: *
  331: *        Compute inv(A) from the factorization A = L*D*L**T.
  332: *
  333: *        K is the main loop index, increasing from 1 to N in steps of
  334: *        1 or 2, depending on the size of the diagonal blocks.
  335: *
  336:          K = N
  337:    50    CONTINUE
  338: *
  339: *        If K < 1, exit from loop.
  340: *
  341:          IF( K.LT.1 )
  342:      $      GO TO 60
  343: *
  344:          IF( IPIV( K ).GT.0 ) THEN
  345: *
  346: *           1 x 1 diagonal block
  347: *
  348: *           Invert the diagonal block.
  349: *
  350:             A( K, K ) = CONE / A( K, K )
  351: *
  352: *           Compute column K of the inverse.
  353: *
  354:             IF( K.LT.N ) THEN
  355:                CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  356:                CALL ZSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
  357:      $                     CZERO, A( K+1, K ), 1 )
  358:                A( K, K ) = A( K, K ) - ZDOTU( N-K, WORK, 1, A( K+1, K ),
  359:      $                     1 )
  360:             END IF
  361:             KSTEP = 1
  362:          ELSE
  363: *
  364: *           2 x 2 diagonal block
  365: *
  366: *           Invert the diagonal block.
  367: *
  368:             T = A( K, K-1 )
  369:             AK = A( K-1, K-1 ) / T
  370:             AKP1 = A( K, K ) / T
  371:             AKKP1 = A( K, K-1 ) / T
  372:             D = T*( AK*AKP1-CONE )
  373:             A( K-1, K-1 ) = AKP1 / D
  374:             A( K, K ) = AK / D
  375:             A( K, K-1 ) = -AKKP1 / D
  376: *
  377: *           Compute columns K-1 and K of the inverse.
  378: *
  379:             IF( K.LT.N ) THEN
  380:                CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  381:                CALL ZSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
  382:      $                     CZERO, A( K+1, K ), 1 )
  383:                A( K, K ) = A( K, K ) - ZDOTU( N-K, WORK, 1, A( K+1, K ),
  384:      $                     1 )
  385:                A( K, K-1 ) = A( K, K-1 ) -
  386:      $                       ZDOTU( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
  387:      $                       1 )
  388:                CALL ZCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
  389:                CALL ZSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
  390:      $                     CZERO, A( K+1, K-1 ), 1 )
  391:                A( K-1, K-1 ) = A( K-1, K-1 ) -
  392:      $                         ZDOTU( N-K, WORK, 1, A( K+1, K-1 ), 1 )
  393:             END IF
  394:             KSTEP = 2
  395:          END IF  
  396: *
  397:          IF( KSTEP.EQ.1 ) THEN
  398: *
  399: *           Interchange rows and columns K and IPIV(K) in the trailing
  400: *           submatrix A(k-1:n,k-1:n)
  401: *
  402:             KP = IPIV( K )
  403:             IF( KP.NE.K ) THEN
  404:                IF( KP.LT.N )
  405:      $            CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  406:                CALL ZSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  407:                TEMP = A( K, K )
  408:                A( K, K ) = A( KP, KP )
  409:                A( KP, KP ) = TEMP
  410:             END IF
  411:          ELSE
  412: *
  413: *           Interchange rows and columns K and K-1 with -IPIV(K) and
  414: *           -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n)
  415: *
  416:             KP = -IPIV( K )
  417:             IF( KP.NE.K ) THEN
  418:                IF( KP.LT.N )
  419:      $            CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  420:                CALL ZSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  421: *
  422:                TEMP = A( K, K )
  423:                A( K, K ) = A( KP, KP )
  424:                A( KP, KP ) = TEMP
  425:                TEMP = A( K, K-1 )
  426:                A( K, K-1 ) = A( KP, K-1 )
  427:                A( KP, K-1 ) = TEMP
  428:             END IF
  429: *
  430:             K = K - 1
  431:             KP = -IPIV( K )
  432:             IF( KP.NE.K ) THEN
  433:                IF( KP.LT.N )
  434:      $            CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  435:                CALL ZSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  436:                TEMP = A( K, K )
  437:                A( K, K ) = A( KP, KP )
  438:                A( KP, KP ) = TEMP
  439:             END IF
  440:          END IF
  441: *
  442:          K = K - 1
  443:          GO TO 50
  444:    60    CONTINUE
  445:       END IF
  446: *
  447:       RETURN
  448: *
  449: *     End of ZSYTRI_ROOK
  450: *
  451:       END

CVSweb interface <joel.bertrand@systella.fr>