File:  [local] / rpl / lapack / lapack / zsytri_3x.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:39 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSYTRI_3X
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYTRI_3X + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytri_3x.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytri_3x.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytri_3x.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ),  E( * ), WORK( N+NB+1, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *> ZSYTRI_3X computes the inverse of a complex symmetric indefinite
   38: *> matrix A using the factorization computed by ZSYTRF_RK or ZSYTRF_BK:
   39: *>
   40: *>     A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
   41: *>
   42: *> where U (or L) is unit upper (or lower) triangular matrix,
   43: *> U**T (or L**T) is the transpose of U (or L), P is a permutation
   44: *> matrix, P**T is the transpose of P, and D is symmetric and block
   45: *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the details of the factorization are
   57: *>          stored as an upper or lower triangular matrix.
   58: *>          = 'U':  Upper triangle of A is stored;
   59: *>          = 'L':  Lower triangle of A is stored.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] A
   69: *> \verbatim
   70: *>          A is COMPLEX*16 array, dimension (LDA,N)
   71: *>          On entry, diagonal of the block diagonal matrix D and
   72: *>          factors U or L as computed by ZSYTRF_RK and ZSYTRF_BK:
   73: *>            a) ONLY diagonal elements of the symmetric block diagonal
   74: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
   75: *>               (superdiagonal (or subdiagonal) elements of D
   76: *>                should be provided on entry in array E), and
   77: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
   78: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
   79: *>
   80: *>          On exit, if INFO = 0, the symmetric inverse of the original
   81: *>          matrix.
   82: *>             If UPLO = 'U': the upper triangular part of the inverse
   83: *>             is formed and the part of A below the diagonal is not
   84: *>             referenced;
   85: *>             If UPLO = 'L': the lower triangular part of the inverse
   86: *>             is formed and the part of A above the diagonal is not
   87: *>             referenced.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] LDA
   91: *> \verbatim
   92: *>          LDA is INTEGER
   93: *>          The leading dimension of the array A.  LDA >= max(1,N).
   94: *> \endverbatim
   95: *>
   96: *> \param[in] E
   97: *> \verbatim
   98: *>          E is COMPLEX*16 array, dimension (N)
   99: *>          On entry, contains the superdiagonal (or subdiagonal)
  100: *>          elements of the symmetric block diagonal matrix D
  101: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
  102: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
  103: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
  104: *>
  105: *>          NOTE: For 1-by-1 diagonal block D(k), where
  106: *>          1 <= k <= N, the element E(k) is not referenced in both
  107: *>          UPLO = 'U' or UPLO = 'L' cases.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] IPIV
  111: *> \verbatim
  112: *>          IPIV is INTEGER array, dimension (N)
  113: *>          Details of the interchanges and the block structure of D
  114: *>          as determined by ZSYTRF_RK or ZSYTRF_BK.
  115: *> \endverbatim
  116: *>
  117: *> \param[out] WORK
  118: *> \verbatim
  119: *>          WORK is COMPLEX*16 array, dimension (N+NB+1,NB+3).
  120: *> \endverbatim
  121: *>
  122: *> \param[in] NB
  123: *> \verbatim
  124: *>          NB is INTEGER
  125: *>          Block size.
  126: *> \endverbatim
  127: *>
  128: *> \param[out] INFO
  129: *> \verbatim
  130: *>          INFO is INTEGER
  131: *>          = 0: successful exit
  132: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  133: *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  134: *>               inverse could not be computed.
  135: *> \endverbatim
  136: *
  137: *  Authors:
  138: *  ========
  139: *
  140: *> \author Univ. of Tennessee
  141: *> \author Univ. of California Berkeley
  142: *> \author Univ. of Colorado Denver
  143: *> \author NAG Ltd.
  144: *
  145: *> \ingroup complex16SYcomputational
  146: *
  147: *> \par Contributors:
  148: *  ==================
  149: *> \verbatim
  150: *>
  151: *>  June 2017,  Igor Kozachenko,
  152: *>                  Computer Science Division,
  153: *>                  University of California, Berkeley
  154: *>
  155: *> \endverbatim
  156: *
  157: *  =====================================================================
  158:       SUBROUTINE ZSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  159: *
  160: *  -- LAPACK computational routine --
  161: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  162: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163: *
  164: *     .. Scalar Arguments ..
  165:       CHARACTER          UPLO
  166:       INTEGER            INFO, LDA, N, NB
  167: *     ..
  168: *     .. Array Arguments ..
  169:       INTEGER            IPIV( * )
  170:       COMPLEX*16         A( LDA, * ), E( * ), WORK( N+NB+1, * )
  171: *     ..
  172: *
  173: *  =====================================================================
  174: *
  175: *     .. Parameters ..
  176:       COMPLEX*16         CONE, CZERO
  177:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
  178:      $                     CZERO = ( 0.0D+0, 0.0D+0 ) )
  179: *     ..
  180: *     .. Local Scalars ..
  181:       LOGICAL            UPPER
  182:       INTEGER            CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
  183:       COMPLEX*16         AK, AKKP1, AKP1, D, T, U01_I_J, U01_IP1_J,
  184:      $                   U11_I_J, U11_IP1_J
  185: *     ..
  186: *     .. External Functions ..
  187:       LOGICAL            LSAME
  188:       EXTERNAL           LSAME
  189: *     ..
  190: *     .. External Subroutines ..
  191:       EXTERNAL           ZGEMM, ZSYSWAPR, ZTRTRI, ZTRMM, XERBLA
  192: *     ..
  193: *     .. Intrinsic Functions ..
  194:       INTRINSIC          ABS, MAX, MOD
  195: *     ..
  196: *     .. Executable Statements ..
  197: *
  198: *     Test the input parameters.
  199: *
  200:       INFO = 0
  201:       UPPER = LSAME( UPLO, 'U' )
  202:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  203:          INFO = -1
  204:       ELSE IF( N.LT.0 ) THEN
  205:          INFO = -2
  206:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  207:          INFO = -4
  208:       END IF
  209: *
  210: *     Quick return if possible
  211: *
  212:       IF( INFO.NE.0 ) THEN
  213:          CALL XERBLA( 'ZSYTRI_3X', -INFO )
  214:          RETURN
  215:       END IF
  216:       IF( N.EQ.0 )
  217:      $   RETURN
  218: *
  219: *     Workspace got Non-diag elements of D
  220: *
  221:       DO K = 1, N
  222:          WORK( K, 1 ) = E( K )
  223:       END DO
  224: *
  225: *     Check that the diagonal matrix D is nonsingular.
  226: *
  227:       IF( UPPER ) THEN
  228: *
  229: *        Upper triangular storage: examine D from bottom to top
  230: *
  231:          DO INFO = N, 1, -1
  232:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  233:      $         RETURN
  234:          END DO
  235:       ELSE
  236: *
  237: *        Lower triangular storage: examine D from top to bottom.
  238: *
  239:          DO INFO = 1, N
  240:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  241:      $         RETURN
  242:          END DO
  243:       END IF
  244: *
  245:       INFO = 0
  246: *
  247: *     Splitting Workspace
  248: *     U01 is a block ( N, NB+1 )
  249: *     The first element of U01 is in WORK( 1, 1 )
  250: *     U11 is a block ( NB+1, NB+1 )
  251: *     The first element of U11 is in WORK( N+1, 1 )
  252: *
  253:       U11 = N
  254: *
  255: *     INVD is a block ( N, 2 )
  256: *     The first element of INVD is in WORK( 1, INVD )
  257: *
  258:       INVD = NB + 2
  259: 
  260:       IF( UPPER ) THEN
  261: *
  262: *        Begin Upper
  263: *
  264: *        invA = P * inv(U**T) * inv(D) * inv(U) * P**T.
  265: *
  266:          CALL ZTRTRI( UPLO, 'U', N, A, LDA, INFO )
  267: *
  268: *        inv(D) and inv(D) * inv(U)
  269: *
  270:          K = 1
  271:          DO WHILE( K.LE.N )
  272:             IF( IPIV( K ).GT.0 ) THEN
  273: *              1 x 1 diagonal NNB
  274:                WORK( K, INVD ) = CONE /  A( K, K )
  275:                WORK( K, INVD+1 ) = CZERO
  276:             ELSE
  277: *              2 x 2 diagonal NNB
  278:                T = WORK( K+1, 1 )
  279:                AK = A( K, K ) / T
  280:                AKP1 = A( K+1, K+1 ) / T
  281:                AKKP1 = WORK( K+1, 1 )  / T
  282:                D = T*( AK*AKP1-CONE )
  283:                WORK( K, INVD ) = AKP1 / D
  284:                WORK( K+1, INVD+1 ) = AK / D
  285:                WORK( K, INVD+1 ) = -AKKP1 / D
  286:                WORK( K+1, INVD ) = WORK( K, INVD+1 )
  287:                K = K + 1
  288:             END IF
  289:             K = K + 1
  290:          END DO
  291: *
  292: *        inv(U**T) = (inv(U))**T
  293: *
  294: *        inv(U**T) * inv(D) * inv(U)
  295: *
  296:          CUT = N
  297:          DO WHILE( CUT.GT.0 )
  298:             NNB = NB
  299:             IF( CUT.LE.NNB ) THEN
  300:                NNB = CUT
  301:             ELSE
  302:                ICOUNT = 0
  303: *              count negative elements,
  304:                DO I = CUT+1-NNB, CUT
  305:                   IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  306:                END DO
  307: *              need a even number for a clear cut
  308:                IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  309:             END IF
  310: 
  311:             CUT = CUT - NNB
  312: *
  313: *           U01 Block
  314: *
  315:             DO I = 1, CUT
  316:                DO J = 1, NNB
  317:                   WORK( I, J ) = A( I, CUT+J )
  318:                END DO
  319:             END DO
  320: *
  321: *           U11 Block
  322: *
  323:             DO I = 1, NNB
  324:                WORK( U11+I, I ) = CONE
  325:                DO J = 1, I-1
  326:                   WORK( U11+I, J ) = CZERO
  327:                 END DO
  328:                 DO J = I+1, NNB
  329:                    WORK( U11+I, J ) = A( CUT+I, CUT+J )
  330:                 END DO
  331:             END DO
  332: *
  333: *           invD * U01
  334: *
  335:             I = 1
  336:             DO WHILE( I.LE.CUT )
  337:                IF( IPIV( I ).GT.0 ) THEN
  338:                   DO J = 1, NNB
  339:                      WORK( I, J ) = WORK( I, INVD ) * WORK( I, J )
  340:                   END DO
  341:                ELSE
  342:                   DO J = 1, NNB
  343:                      U01_I_J = WORK( I, J )
  344:                      U01_IP1_J = WORK( I+1, J )
  345:                      WORK( I, J ) = WORK( I, INVD ) * U01_I_J
  346:      $                            + WORK( I, INVD+1 ) * U01_IP1_J
  347:                      WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J
  348:      $                              + WORK( I+1, INVD+1 ) * U01_IP1_J
  349:                   END DO
  350:                   I = I + 1
  351:                END IF
  352:                I = I + 1
  353:             END DO
  354: *
  355: *           invD1 * U11
  356: *
  357:             I = 1
  358:             DO WHILE ( I.LE.NNB )
  359:                IF( IPIV( CUT+I ).GT.0 ) THEN
  360:                   DO J = I, NNB
  361:                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  362:                   END DO
  363:                ELSE
  364:                   DO J = I, NNB
  365:                      U11_I_J = WORK(U11+I,J)
  366:                      U11_IP1_J = WORK(U11+I+1,J)
  367:                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  368:      $                            + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J)
  369:                      WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J
  370:      $                               + WORK(CUT+I+1,INVD+1) * U11_IP1_J
  371:                   END DO
  372:                   I = I + 1
  373:                END IF
  374:                I = I + 1
  375:             END DO
  376: *
  377: *           U11**T * invD1 * U11 -> U11
  378: *
  379:             CALL ZTRMM( 'L', 'U', 'T', 'U', NNB, NNB,
  380:      $                 CONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  381:      $                 N+NB+1 )
  382: *
  383:             DO I = 1, NNB
  384:                DO J = I, NNB
  385:                   A( CUT+I, CUT+J ) = WORK( U11+I, J )
  386:                END DO
  387:             END DO
  388: *
  389: *           U01**T * invD * U01 -> A( CUT+I, CUT+J )
  390: *
  391:             CALL ZGEMM( 'T', 'N', NNB, NNB, CUT, CONE, A( 1, CUT+1 ),
  392:      $                  LDA, WORK, N+NB+1, CZERO, WORK(U11+1,1),
  393:      $                  N+NB+1 )
  394: 
  395: *
  396: *           U11 =  U11**T * invD1 * U11 + U01**T * invD * U01
  397: *
  398:             DO I = 1, NNB
  399:                DO J = I, NNB
  400:                   A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J)
  401:                END DO
  402:             END DO
  403: *
  404: *           U01 =  U00**T * invD0 * U01
  405: *
  406:             CALL ZTRMM( 'L', UPLO, 'T', 'U', CUT, NNB,
  407:      $                  CONE, A, LDA, WORK, N+NB+1 )
  408: 
  409: *
  410: *           Update U01
  411: *
  412:             DO I = 1, CUT
  413:                DO J = 1, NNB
  414:                   A( I, CUT+J ) = WORK( I, J )
  415:                END DO
  416:             END DO
  417: *
  418: *           Next Block
  419: *
  420:          END DO
  421: *
  422: *        Apply PERMUTATIONS P and P**T:
  423: *        P * inv(U**T) * inv(D) * inv(U) * P**T.
  424: *        Interchange rows and columns I and IPIV(I) in reverse order
  425: *        from the formation order of IPIV vector for Upper case.
  426: *
  427: *        ( We can use a loop over IPIV with increment 1,
  428: *        since the ABS value of IPIV(I) represents the row (column)
  429: *        index of the interchange with row (column) i in both 1x1
  430: *        and 2x2 pivot cases, i.e. we don't need separate code branches
  431: *        for 1x1 and 2x2 pivot cases )
  432: *
  433:          DO I = 1, N
  434:              IP = ABS( IPIV( I ) )
  435:              IF( IP.NE.I ) THEN
  436:                 IF (I .LT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, I ,IP )
  437:                 IF (I .GT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, IP ,I )
  438:              END IF
  439:          END DO
  440: *
  441:       ELSE
  442: *
  443: *        Begin Lower
  444: *
  445: *        inv A = P * inv(L**T) * inv(D) * inv(L) * P**T.
  446: *
  447:          CALL ZTRTRI( UPLO, 'U', N, A, LDA, INFO )
  448: *
  449: *        inv(D) and inv(D) * inv(L)
  450: *
  451:          K = N
  452:          DO WHILE ( K .GE. 1 )
  453:             IF( IPIV( K ).GT.0 ) THEN
  454: *              1 x 1 diagonal NNB
  455:                WORK( K, INVD ) = CONE /  A( K, K )
  456:                WORK( K, INVD+1 ) = CZERO
  457:             ELSE
  458: *              2 x 2 diagonal NNB
  459:                T = WORK( K-1, 1 )
  460:                AK = A( K-1, K-1 ) / T
  461:                AKP1 = A( K, K ) / T
  462:                AKKP1 = WORK( K-1, 1 ) / T
  463:                D = T*( AK*AKP1-CONE )
  464:                WORK( K-1, INVD ) = AKP1 / D
  465:                WORK( K, INVD ) = AK / D
  466:                WORK( K, INVD+1 ) = -AKKP1 / D
  467:                WORK( K-1, INVD+1 ) = WORK( K, INVD+1 )
  468:                K = K - 1
  469:             END IF
  470:             K = K - 1
  471:          END DO
  472: *
  473: *        inv(L**T) = (inv(L))**T
  474: *
  475: *        inv(L**T) * inv(D) * inv(L)
  476: *
  477:          CUT = 0
  478:          DO WHILE( CUT.LT.N )
  479:             NNB = NB
  480:             IF( (CUT + NNB).GT.N ) THEN
  481:                NNB = N - CUT
  482:             ELSE
  483:                ICOUNT = 0
  484: *              count negative elements,
  485:                DO I = CUT + 1, CUT+NNB
  486:                   IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  487:                END DO
  488: *              need a even number for a clear cut
  489:                IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  490:             END IF
  491: *
  492: *           L21 Block
  493: *
  494:             DO I = 1, N-CUT-NNB
  495:                DO J = 1, NNB
  496:                  WORK( I, J ) = A( CUT+NNB+I, CUT+J )
  497:                END DO
  498:             END DO
  499: *
  500: *           L11 Block
  501: *
  502:             DO I = 1, NNB
  503:                WORK( U11+I, I) = CONE
  504:                DO J = I+1, NNB
  505:                   WORK( U11+I, J ) = CZERO
  506:                END DO
  507:                DO J = 1, I-1
  508:                   WORK( U11+I, J ) = A( CUT+I, CUT+J )
  509:                END DO
  510:             END DO
  511: *
  512: *           invD*L21
  513: *
  514:             I = N-CUT-NNB
  515:             DO WHILE( I.GE.1 )
  516:                IF( IPIV( CUT+NNB+I ).GT.0 ) THEN
  517:                   DO J = 1, NNB
  518:                      WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J)
  519:                   END DO
  520:                ELSE
  521:                   DO J = 1, NNB
  522:                      U01_I_J = WORK(I,J)
  523:                      U01_IP1_J = WORK(I-1,J)
  524:                      WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
  525:      $                        WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
  526:                      WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
  527:      $                        WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
  528:                   END DO
  529:                   I = I - 1
  530:                END IF
  531:                I = I - 1
  532:             END DO
  533: *
  534: *           invD1*L11
  535: *
  536:             I = NNB
  537:             DO WHILE( I.GE.1 )
  538:                IF( IPIV( CUT+I ).GT.0 ) THEN
  539:                   DO J = 1, NNB
  540:                      WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J)
  541:                   END DO
  542: 
  543:                ELSE
  544:                   DO J = 1, NNB
  545:                      U11_I_J = WORK( U11+I, J )
  546:                      U11_IP1_J = WORK( U11+I-1, J )
  547:                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  548:      $                                + WORK(CUT+I,INVD+1) * U11_IP1_J
  549:                      WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J
  550:      $                                  + WORK(CUT+I-1,INVD) * U11_IP1_J
  551:                   END DO
  552:                   I = I - 1
  553:                END IF
  554:                I = I - 1
  555:             END DO
  556: *
  557: *           L11**T * invD1 * L11 -> L11
  558: *
  559:             CALL ZTRMM( 'L', UPLO, 'T', 'U', NNB, NNB, CONE,
  560:      $                   A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  561:      $                   N+NB+1 )
  562: 
  563: *
  564:             DO I = 1, NNB
  565:                DO J = 1, I
  566:                   A( CUT+I, CUT+J ) = WORK( U11+I, J )
  567:                END DO
  568:             END DO
  569: *
  570:             IF( (CUT+NNB).LT.N ) THEN
  571: *
  572: *              L21**T * invD2*L21 -> A( CUT+I, CUT+J )
  573: *
  574:                CALL ZGEMM( 'T', 'N', NNB, NNB, N-NNB-CUT, CONE,
  575:      $                     A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1,
  576:      $                     CZERO, WORK( U11+1, 1 ), N+NB+1 )
  577: 
  578: *
  579: *              L11 =  L11**T * invD1 * L11 + U01**T * invD * U01
  580: *
  581:                DO I = 1, NNB
  582:                   DO J = 1, I
  583:                      A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J)
  584:                   END DO
  585:                END DO
  586: *
  587: *              L01 =  L22**T * invD2 * L21
  588: *
  589:                CALL ZTRMM( 'L', UPLO, 'T', 'U', N-NNB-CUT, NNB, CONE,
  590:      $                     A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK,
  591:      $                     N+NB+1 )
  592: *
  593: *              Update L21
  594: *
  595:                DO I = 1, N-CUT-NNB
  596:                   DO J = 1, NNB
  597:                      A( CUT+NNB+I, CUT+J ) = WORK( I, J )
  598:                   END DO
  599:                END DO
  600: *
  601:             ELSE
  602: *
  603: *              L11 =  L11**T * invD1 * L11
  604: *
  605:                DO I = 1, NNB
  606:                   DO J = 1, I
  607:                      A( CUT+I, CUT+J ) = WORK( U11+I, J )
  608:                   END DO
  609:                END DO
  610:             END IF
  611: *
  612: *           Next Block
  613: *
  614:             CUT = CUT + NNB
  615: *
  616:          END DO
  617: *
  618: *        Apply PERMUTATIONS P and P**T:
  619: *        P * inv(L**T) * inv(D) * inv(L) * P**T.
  620: *        Interchange rows and columns I and IPIV(I) in reverse order
  621: *        from the formation order of IPIV vector for Lower case.
  622: *
  623: *        ( We can use a loop over IPIV with increment -1,
  624: *        since the ABS value of IPIV(I) represents the row (column)
  625: *        index of the interchange with row (column) i in both 1x1
  626: *        and 2x2 pivot cases, i.e. we don't need separate code branches
  627: *        for 1x1 and 2x2 pivot cases )
  628: *
  629:          DO I = N, 1, -1
  630:              IP = ABS( IPIV( I ) )
  631:              IF( IP.NE.I ) THEN
  632:                 IF (I .LT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, I ,IP )
  633:                 IF (I .GT. IP) CALL ZSYSWAPR( UPLO, N, A, LDA, IP ,I )
  634:              END IF
  635:          END DO
  636: *
  637:       END IF
  638: *
  639:       RETURN
  640: *
  641: *     End of ZSYTRI_3X
  642: *
  643:       END
  644: 

CVSweb interface <joel.bertrand@systella.fr>