Annotation of rpl/lapack/lapack/zsytrf_rook.f, revision 1.9

1.1       bertrand    1: *> \brief \b ZSYTRF_ROOK
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.6       bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
                      8: *> \htmlonly
1.6       bertrand    9: *> Download ZSYTRF_ROOK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_rook.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_rook.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_rook.f">
1.1       bertrand   15: *> [TXT]</a>
1.6       bertrand   16: *> \endhtmlonly
1.1       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZSYTRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
1.6       bertrand   22: *
1.1       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, LWORK, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       COMPLEX*16         A( LDA, * ), WORK( * )
                     30: *       ..
1.6       bertrand   31: *
1.1       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZSYTRF_ROOK computes the factorization of a complex symmetric matrix A
                     39: *> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
                     40: *> The form of the factorization is
                     41: *>
                     42: *>    A = U*D*U**T  or  A = L*D*L**T
                     43: *>
                     44: *> where U (or L) is a product of permutation and unit upper (lower)
                     45: *> triangular matrices, and D is symmetric and block diagonal with
                     46: *> 1-by-1 and 2-by-2 diagonal blocks.
                     47: *>
                     48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] UPLO
                     55: *> \verbatim
                     56: *>          UPLO is CHARACTER*1
                     57: *>          = 'U':  Upper triangle of A is stored;
                     58: *>          = 'L':  Lower triangle of A is stored.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] N
                     62: *> \verbatim
                     63: *>          N is INTEGER
                     64: *>          The order of the matrix A.  N >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in,out] A
                     68: *> \verbatim
                     69: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     70: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     71: *>          N-by-N upper triangular part of A contains the upper
                     72: *>          triangular part of the matrix A, and the strictly lower
                     73: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     74: *>          leading N-by-N lower triangular part of A contains the lower
                     75: *>          triangular part of the matrix A, and the strictly upper
                     76: *>          triangular part of A is not referenced.
                     77: *>
                     78: *>          On exit, the block diagonal matrix D and the multipliers used
                     79: *>          to obtain the factor U or L (see below for further details).
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDA
                     83: *> \verbatim
                     84: *>          LDA is INTEGER
                     85: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[out] IPIV
                     89: *> \verbatim
                     90: *>          IPIV is INTEGER array, dimension (N)
                     91: *>          Details of the interchanges and the block structure of D.
                     92: *>
                     93: *>          If UPLO = 'U':
                     94: *>               If IPIV(k) > 0, then rows and columns k and IPIV(k)
                     95: *>               were interchanged and D(k,k) is a 1-by-1 diagonal block.
                     96: *>
                     97: *>               If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
                     98: *>               columns k and -IPIV(k) were interchanged and rows and
                     99: *>               columns k-1 and -IPIV(k-1) were inerchaged,
                    100: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                    101: *>
                    102: *>          If UPLO = 'L':
                    103: *>               If IPIV(k) > 0, then rows and columns k and IPIV(k)
                    104: *>               were interchanged and D(k,k) is a 1-by-1 diagonal block.
                    105: *>
                    106: *>               If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
                    107: *>               columns k and -IPIV(k) were interchanged and rows and
                    108: *>               columns k+1 and -IPIV(k+1) were inerchaged,
                    109: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[out] WORK
                    113: *> \verbatim
                    114: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)).
                    115: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] LWORK
                    119: *> \verbatim
                    120: *>          LWORK is INTEGER
                    121: *>          The length of WORK.  LWORK >=1.  For best performance
                    122: *>          LWORK >= N*NB, where NB is the block size returned by ILAENV.
                    123: *>
                    124: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    125: *>          only calculates the optimal size of the WORK array, returns
                    126: *>          this value as the first entry of the WORK array, and no error
                    127: *>          message related to LWORK is issued by XERBLA.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[out] INFO
                    131: *> \verbatim
                    132: *>          INFO is INTEGER
                    133: *>          = 0:  successful exit
                    134: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    135: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                    136: *>                has been completed, but the block diagonal matrix D is
                    137: *>                exactly singular, and division by zero will occur if it
                    138: *>                is used to solve a system of equations.
                    139: *> \endverbatim
                    140: *
                    141: *  Authors:
                    142: *  ========
                    143: *
1.6       bertrand  144: *> \author Univ. of Tennessee
                    145: *> \author Univ. of California Berkeley
                    146: *> \author Univ. of Colorado Denver
                    147: *> \author NAG Ltd.
1.1       bertrand  148: *
                    149: *> \ingroup complex16SYcomputational
                    150: *
                    151: *> \par Further Details:
                    152: *  =====================
                    153: *>
                    154: *> \verbatim
                    155: *>
                    156: *>  If UPLO = 'U', then A = U*D*U**T, where
                    157: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
                    158: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
                    159: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    160: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    161: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
                    162: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    163: *>
                    164: *>             (   I    v    0   )   k-s
                    165: *>     U(k) =  (   0    I    0   )   s
                    166: *>             (   0    0    I   )   n-k
                    167: *>                k-s   s   n-k
                    168: *>
                    169: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
                    170: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
                    171: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
                    172: *>
                    173: *>  If UPLO = 'L', then A = L*D*L**T, where
                    174: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
                    175: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
                    176: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    177: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    178: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
                    179: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    180: *>
                    181: *>             (   I    0     0   )  k-1
                    182: *>     L(k) =  (   0    I     0   )  s
                    183: *>             (   0    v     I   )  n-k-s+1
                    184: *>                k-1   s  n-k-s+1
                    185: *>
                    186: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
                    187: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
                    188: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
                    189: *> \endverbatim
                    190: *
                    191: *> \par Contributors:
                    192: *  ==================
                    193: *>
                    194: *> \verbatim
                    195: *>
1.4       bertrand  196: *>   June 2016, Igor Kozachenko,
1.1       bertrand  197: *>                  Computer Science Division,
                    198: *>                  University of California, Berkeley
                    199: *>
                    200: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    201: *>                  School of Mathematics,
                    202: *>                  University of Manchester
                    203: *>
                    204: *> \endverbatim
                    205: *
                    206: *  =====================================================================
                    207:       SUBROUTINE ZSYTRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                    208: *
1.9     ! bertrand  209: *  -- LAPACK computational routine --
1.1       bertrand  210: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    211: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    212: *
                    213: *     .. Scalar Arguments ..
                    214:       CHARACTER          UPLO
                    215:       INTEGER            INFO, LDA, LWORK, N
                    216: *     ..
                    217: *     .. Array Arguments ..
                    218:       INTEGER            IPIV( * )
                    219:       COMPLEX*16         A( LDA, * ), WORK( * )
                    220: *     ..
                    221: *
                    222: *  =====================================================================
                    223: *
                    224: *     .. Local Scalars ..
                    225:       LOGICAL            LQUERY, UPPER
                    226:       INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
                    227: *     ..
                    228: *     .. External Functions ..
                    229:       LOGICAL            LSAME
                    230:       INTEGER            ILAENV
                    231:       EXTERNAL           LSAME, ILAENV
                    232: *     ..
                    233: *     .. External Subroutines ..
                    234:       EXTERNAL           ZLASYF_ROOK, ZSYTF2_ROOK, XERBLA
                    235: *     ..
                    236: *     .. Intrinsic Functions ..
                    237:       INTRINSIC          MAX
                    238: *     ..
                    239: *     .. Executable Statements ..
                    240: *
                    241: *     Test the input parameters.
                    242: *
                    243:       INFO = 0
                    244:       UPPER = LSAME( UPLO, 'U' )
                    245:       LQUERY = ( LWORK.EQ.-1 )
                    246:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    247:          INFO = -1
                    248:       ELSE IF( N.LT.0 ) THEN
                    249:          INFO = -2
                    250:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    251:          INFO = -4
                    252:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    253:          INFO = -7
                    254:       END IF
                    255: *
                    256:       IF( INFO.EQ.0 ) THEN
                    257: *
                    258: *        Determine the block size
                    259: *
                    260:          NB = ILAENV( 1, 'ZSYTRF_ROOK', UPLO, N, -1, -1, -1 )
1.4       bertrand  261:          LWKOPT = MAX( 1, N*NB )
1.1       bertrand  262:          WORK( 1 ) = LWKOPT
                    263:       END IF
                    264: *
                    265:       IF( INFO.NE.0 ) THEN
                    266:          CALL XERBLA( 'ZSYTRF_ROOK', -INFO )
                    267:          RETURN
                    268:       ELSE IF( LQUERY ) THEN
                    269:          RETURN
                    270:       END IF
                    271: *
                    272:       NBMIN = 2
                    273:       LDWORK = N
                    274:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    275:          IWS = LDWORK*NB
                    276:          IF( LWORK.LT.IWS ) THEN
                    277:             NB = MAX( LWORK / LDWORK, 1 )
                    278:             NBMIN = MAX( 2, ILAENV( 2, 'ZSYTRF_ROOK',
                    279:      $                              UPLO, N, -1, -1, -1 ) )
                    280:          END IF
                    281:       ELSE
                    282:          IWS = 1
                    283:       END IF
                    284:       IF( NB.LT.NBMIN )
                    285:      $   NB = N
                    286: *
                    287:       IF( UPPER ) THEN
                    288: *
                    289: *        Factorize A as U*D*U**T using the upper triangle of A
                    290: *
                    291: *        K is the main loop index, decreasing from N to 1 in steps of
                    292: *        KB, where KB is the number of columns factorized by ZLASYF_ROOK;
                    293: *        KB is either NB or NB-1, or K for the last block
                    294: *
                    295:          K = N
                    296:    10    CONTINUE
                    297: *
                    298: *        If K < 1, exit from loop
                    299: *
                    300:          IF( K.LT.1 )
                    301:      $      GO TO 40
                    302: *
                    303:          IF( K.GT.NB ) THEN
                    304: *
                    305: *           Factorize columns k-kb+1:k of A and use blocked code to
                    306: *           update columns 1:k-kb
                    307: *
                    308:             CALL ZLASYF_ROOK( UPLO, K, NB, KB, A, LDA,
                    309:      $                        IPIV, WORK, LDWORK, IINFO )
                    310:          ELSE
                    311: *
                    312: *           Use unblocked code to factorize columns 1:k of A
                    313: *
                    314:             CALL ZSYTF2_ROOK( UPLO, K, A, LDA, IPIV, IINFO )
                    315:             KB = K
                    316:          END IF
                    317: *
                    318: *        Set INFO on the first occurrence of a zero pivot
                    319: *
                    320:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
1.6       bertrand  321:      $      INFO = IINFO
1.1       bertrand  322: *
                    323: *        No need to adjust IPIV
                    324: *
                    325: *        Decrease K and return to the start of the main loop
                    326: *
                    327:          K = K - KB
                    328:          GO TO 10
                    329: *
                    330:       ELSE
                    331: *
                    332: *        Factorize A as L*D*L**T using the lower triangle of A
                    333: *
                    334: *        K is the main loop index, increasing from 1 to N in steps of
                    335: *        KB, where KB is the number of columns factorized by ZLASYF_ROOK;
                    336: *        KB is either NB or NB-1, or N-K+1 for the last block
                    337: *
                    338:          K = 1
                    339:    20    CONTINUE
                    340: *
                    341: *        If K > N, exit from loop
                    342: *
                    343:          IF( K.GT.N )
                    344:      $      GO TO 40
                    345: *
                    346:          IF( K.LE.N-NB ) THEN
                    347: *
                    348: *           Factorize columns k:k+kb-1 of A and use blocked code to
                    349: *           update columns k+kb:n
                    350: *
                    351:             CALL ZLASYF_ROOK( UPLO, N-K+1, NB, KB, A( K, K ), LDA,
                    352:      $                        IPIV( K ), WORK, LDWORK, IINFO )
                    353:          ELSE
                    354: *
                    355: *           Use unblocked code to factorize columns k:n of A
                    356: *
                    357:             CALL ZSYTF2_ROOK( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ),
                    358:      $                   IINFO )
                    359:             KB = N - K + 1
                    360:          END IF
                    361: *
                    362: *        Set INFO on the first occurrence of a zero pivot
                    363: *
                    364:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    365:      $      INFO = IINFO + K - 1
                    366: *
                    367: *        Adjust IPIV
                    368: *
                    369:          DO 30 J = K, K + KB - 1
                    370:             IF( IPIV( J ).GT.0 ) THEN
                    371:                IPIV( J ) = IPIV( J ) + K - 1
                    372:             ELSE
                    373:                IPIV( J ) = IPIV( J ) - K + 1
                    374:             END IF
                    375:    30    CONTINUE
                    376: *
                    377: *        Increase K and return to the start of the main loop
                    378: *
                    379:          K = K + KB
                    380:          GO TO 20
                    381: *
                    382:       END IF
                    383: *
                    384:    40 CONTINUE
                    385:       WORK( 1 ) = LWKOPT
                    386:       RETURN
                    387: *
                    388: *     End of ZSYTRF_ROOK
                    389: *
                    390:       END

CVSweb interface <joel.bertrand@systella.fr>