Annotation of rpl/lapack/lapack/zsytrf_rook.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b ZSYTRF_ROOK
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZSYTRF_ROOK + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_rook.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_rook.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_rook.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZSYTRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       CHARACTER          UPLO
        !            25: *       INTEGER            INFO, LDA, LWORK, N
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       INTEGER            IPIV( * )
        !            29: *       COMPLEX*16         A( LDA, * ), WORK( * )
        !            30: *       ..
        !            31: *  
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> ZSYTRF_ROOK computes the factorization of a complex symmetric matrix A
        !            39: *> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
        !            40: *> The form of the factorization is
        !            41: *>
        !            42: *>    A = U*D*U**T  or  A = L*D*L**T
        !            43: *>
        !            44: *> where U (or L) is a product of permutation and unit upper (lower)
        !            45: *> triangular matrices, and D is symmetric and block diagonal with
        !            46: *> 1-by-1 and 2-by-2 diagonal blocks.
        !            47: *>
        !            48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
        !            49: *> \endverbatim
        !            50: *
        !            51: *  Arguments:
        !            52: *  ==========
        !            53: *
        !            54: *> \param[in] UPLO
        !            55: *> \verbatim
        !            56: *>          UPLO is CHARACTER*1
        !            57: *>          = 'U':  Upper triangle of A is stored;
        !            58: *>          = 'L':  Lower triangle of A is stored.
        !            59: *> \endverbatim
        !            60: *>
        !            61: *> \param[in] N
        !            62: *> \verbatim
        !            63: *>          N is INTEGER
        !            64: *>          The order of the matrix A.  N >= 0.
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in,out] A
        !            68: *> \verbatim
        !            69: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            70: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
        !            71: *>          N-by-N upper triangular part of A contains the upper
        !            72: *>          triangular part of the matrix A, and the strictly lower
        !            73: *>          triangular part of A is not referenced.  If UPLO = 'L', the
        !            74: *>          leading N-by-N lower triangular part of A contains the lower
        !            75: *>          triangular part of the matrix A, and the strictly upper
        !            76: *>          triangular part of A is not referenced.
        !            77: *>
        !            78: *>          On exit, the block diagonal matrix D and the multipliers used
        !            79: *>          to obtain the factor U or L (see below for further details).
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in] LDA
        !            83: *> \verbatim
        !            84: *>          LDA is INTEGER
        !            85: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[out] IPIV
        !            89: *> \verbatim
        !            90: *>          IPIV is INTEGER array, dimension (N)
        !            91: *>          Details of the interchanges and the block structure of D.
        !            92: *>
        !            93: *>          If UPLO = 'U':
        !            94: *>               If IPIV(k) > 0, then rows and columns k and IPIV(k)
        !            95: *>               were interchanged and D(k,k) is a 1-by-1 diagonal block.
        !            96: *>
        !            97: *>               If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
        !            98: *>               columns k and -IPIV(k) were interchanged and rows and
        !            99: *>               columns k-1 and -IPIV(k-1) were inerchaged,
        !           100: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
        !           101: *>
        !           102: *>          If UPLO = 'L':
        !           103: *>               If IPIV(k) > 0, then rows and columns k and IPIV(k)
        !           104: *>               were interchanged and D(k,k) is a 1-by-1 diagonal block.
        !           105: *>
        !           106: *>               If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
        !           107: *>               columns k and -IPIV(k) were interchanged and rows and
        !           108: *>               columns k+1 and -IPIV(k+1) were inerchaged,
        !           109: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[out] WORK
        !           113: *> \verbatim
        !           114: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)).
        !           115: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           116: *> \endverbatim
        !           117: *>
        !           118: *> \param[in] LWORK
        !           119: *> \verbatim
        !           120: *>          LWORK is INTEGER
        !           121: *>          The length of WORK.  LWORK >=1.  For best performance
        !           122: *>          LWORK >= N*NB, where NB is the block size returned by ILAENV.
        !           123: *>
        !           124: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           125: *>          only calculates the optimal size of the WORK array, returns
        !           126: *>          this value as the first entry of the WORK array, and no error
        !           127: *>          message related to LWORK is issued by XERBLA.
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[out] INFO
        !           131: *> \verbatim
        !           132: *>          INFO is INTEGER
        !           133: *>          = 0:  successful exit
        !           134: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           135: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
        !           136: *>                has been completed, but the block diagonal matrix D is
        !           137: *>                exactly singular, and division by zero will occur if it
        !           138: *>                is used to solve a system of equations.
        !           139: *> \endverbatim
        !           140: *
        !           141: *  Authors:
        !           142: *  ========
        !           143: *
        !           144: *> \author Univ. of Tennessee 
        !           145: *> \author Univ. of California Berkeley 
        !           146: *> \author Univ. of Colorado Denver 
        !           147: *> \author NAG Ltd. 
        !           148: *
        !           149: *> \date November 2011
        !           150: *
        !           151: *> \ingroup complex16SYcomputational
        !           152: *
        !           153: *> \par Further Details:
        !           154: *  =====================
        !           155: *>
        !           156: *> \verbatim
        !           157: *>
        !           158: *>  If UPLO = 'U', then A = U*D*U**T, where
        !           159: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
        !           160: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
        !           161: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
        !           162: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
        !           163: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
        !           164: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
        !           165: *>
        !           166: *>             (   I    v    0   )   k-s
        !           167: *>     U(k) =  (   0    I    0   )   s
        !           168: *>             (   0    0    I   )   n-k
        !           169: *>                k-s   s   n-k
        !           170: *>
        !           171: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
        !           172: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
        !           173: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
        !           174: *>
        !           175: *>  If UPLO = 'L', then A = L*D*L**T, where
        !           176: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
        !           177: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
        !           178: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
        !           179: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
        !           180: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
        !           181: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
        !           182: *>
        !           183: *>             (   I    0     0   )  k-1
        !           184: *>     L(k) =  (   0    I     0   )  s
        !           185: *>             (   0    v     I   )  n-k-s+1
        !           186: *>                k-1   s  n-k-s+1
        !           187: *>
        !           188: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
        !           189: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
        !           190: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
        !           191: *> \endverbatim
        !           192: *
        !           193: *> \par Contributors:
        !           194: *  ==================
        !           195: *>
        !           196: *> \verbatim
        !           197: *>
        !           198: *>   November 2011, Igor Kozachenko,
        !           199: *>                  Computer Science Division,
        !           200: *>                  University of California, Berkeley
        !           201: *>
        !           202: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
        !           203: *>                  School of Mathematics,
        !           204: *>                  University of Manchester
        !           205: *>
        !           206: *> \endverbatim
        !           207: *
        !           208: *  =====================================================================
        !           209:       SUBROUTINE ZSYTRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
        !           210: *
        !           211: *  -- LAPACK computational routine (version 3.4.0) --
        !           212: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           213: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           214: *     November 2011
        !           215: *
        !           216: *     .. Scalar Arguments ..
        !           217:       CHARACTER          UPLO
        !           218:       INTEGER            INFO, LDA, LWORK, N
        !           219: *     ..
        !           220: *     .. Array Arguments ..
        !           221:       INTEGER            IPIV( * )
        !           222:       COMPLEX*16         A( LDA, * ), WORK( * )
        !           223: *     ..
        !           224: *
        !           225: *  =====================================================================
        !           226: *
        !           227: *     .. Local Scalars ..
        !           228:       LOGICAL            LQUERY, UPPER
        !           229:       INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
        !           230: *     ..
        !           231: *     .. External Functions ..
        !           232:       LOGICAL            LSAME
        !           233:       INTEGER            ILAENV
        !           234:       EXTERNAL           LSAME, ILAENV
        !           235: *     ..
        !           236: *     .. External Subroutines ..
        !           237:       EXTERNAL           ZLASYF_ROOK, ZSYTF2_ROOK, XERBLA
        !           238: *     ..
        !           239: *     .. Intrinsic Functions ..
        !           240:       INTRINSIC          MAX
        !           241: *     ..
        !           242: *     .. Executable Statements ..
        !           243: *
        !           244: *     Test the input parameters.
        !           245: *
        !           246:       INFO = 0
        !           247:       UPPER = LSAME( UPLO, 'U' )
        !           248:       LQUERY = ( LWORK.EQ.-1 )
        !           249:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           250:          INFO = -1
        !           251:       ELSE IF( N.LT.0 ) THEN
        !           252:          INFO = -2
        !           253:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           254:          INFO = -4
        !           255:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
        !           256:          INFO = -7
        !           257:       END IF
        !           258: *
        !           259:       IF( INFO.EQ.0 ) THEN
        !           260: *
        !           261: *        Determine the block size
        !           262: *
        !           263:          NB = ILAENV( 1, 'ZSYTRF_ROOK', UPLO, N, -1, -1, -1 )
        !           264:          LWKOPT = N*NB
        !           265:          WORK( 1 ) = LWKOPT
        !           266:       END IF
        !           267: *
        !           268:       IF( INFO.NE.0 ) THEN
        !           269:          CALL XERBLA( 'ZSYTRF_ROOK', -INFO )
        !           270:          RETURN
        !           271:       ELSE IF( LQUERY ) THEN
        !           272:          RETURN
        !           273:       END IF
        !           274: *
        !           275:       NBMIN = 2
        !           276:       LDWORK = N
        !           277:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
        !           278:          IWS = LDWORK*NB
        !           279:          IF( LWORK.LT.IWS ) THEN
        !           280:             NB = MAX( LWORK / LDWORK, 1 )
        !           281:             NBMIN = MAX( 2, ILAENV( 2, 'ZSYTRF_ROOK',
        !           282:      $                              UPLO, N, -1, -1, -1 ) )
        !           283:          END IF
        !           284:       ELSE
        !           285:          IWS = 1
        !           286:       END IF
        !           287:       IF( NB.LT.NBMIN )
        !           288:      $   NB = N
        !           289: *
        !           290:       IF( UPPER ) THEN
        !           291: *
        !           292: *        Factorize A as U*D*U**T using the upper triangle of A
        !           293: *
        !           294: *        K is the main loop index, decreasing from N to 1 in steps of
        !           295: *        KB, where KB is the number of columns factorized by ZLASYF_ROOK;
        !           296: *        KB is either NB or NB-1, or K for the last block
        !           297: *
        !           298:          K = N
        !           299:    10    CONTINUE
        !           300: *
        !           301: *        If K < 1, exit from loop
        !           302: *
        !           303:          IF( K.LT.1 )
        !           304:      $      GO TO 40
        !           305: *
        !           306:          IF( K.GT.NB ) THEN
        !           307: *
        !           308: *           Factorize columns k-kb+1:k of A and use blocked code to
        !           309: *           update columns 1:k-kb
        !           310: *
        !           311:             CALL ZLASYF_ROOK( UPLO, K, NB, KB, A, LDA,
        !           312:      $                        IPIV, WORK, LDWORK, IINFO )
        !           313:          ELSE
        !           314: *
        !           315: *           Use unblocked code to factorize columns 1:k of A
        !           316: *
        !           317:             CALL ZSYTF2_ROOK( UPLO, K, A, LDA, IPIV, IINFO )
        !           318:             KB = K
        !           319:          END IF
        !           320: *
        !           321: *        Set INFO on the first occurrence of a zero pivot
        !           322: *
        !           323:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
        !           324:      $      INFO = IINFO     
        !           325: *
        !           326: *        No need to adjust IPIV
        !           327: *
        !           328: *        Decrease K and return to the start of the main loop
        !           329: *
        !           330:          K = K - KB
        !           331:          GO TO 10
        !           332: *
        !           333:       ELSE
        !           334: *
        !           335: *        Factorize A as L*D*L**T using the lower triangle of A
        !           336: *
        !           337: *        K is the main loop index, increasing from 1 to N in steps of
        !           338: *        KB, where KB is the number of columns factorized by ZLASYF_ROOK;
        !           339: *        KB is either NB or NB-1, or N-K+1 for the last block
        !           340: *
        !           341:          K = 1
        !           342:    20    CONTINUE
        !           343: *
        !           344: *        If K > N, exit from loop
        !           345: *
        !           346:          IF( K.GT.N )
        !           347:      $      GO TO 40
        !           348: *
        !           349:          IF( K.LE.N-NB ) THEN
        !           350: *
        !           351: *           Factorize columns k:k+kb-1 of A and use blocked code to
        !           352: *           update columns k+kb:n
        !           353: *
        !           354:             CALL ZLASYF_ROOK( UPLO, N-K+1, NB, KB, A( K, K ), LDA,
        !           355:      $                        IPIV( K ), WORK, LDWORK, IINFO )
        !           356:          ELSE
        !           357: *
        !           358: *           Use unblocked code to factorize columns k:n of A
        !           359: *
        !           360:             CALL ZSYTF2_ROOK( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ),
        !           361:      $                   IINFO )
        !           362:             KB = N - K + 1
        !           363:          END IF
        !           364: *
        !           365: *        Set INFO on the first occurrence of a zero pivot
        !           366: *
        !           367:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
        !           368:      $      INFO = IINFO + K - 1
        !           369: *
        !           370: *        Adjust IPIV
        !           371: *
        !           372:          DO 30 J = K, K + KB - 1
        !           373:             IF( IPIV( J ).GT.0 ) THEN
        !           374:                IPIV( J ) = IPIV( J ) + K - 1
        !           375:             ELSE
        !           376:                IPIV( J ) = IPIV( J ) - K + 1
        !           377:             END IF
        !           378:    30    CONTINUE
        !           379: *
        !           380: *        Increase K and return to the start of the main loop
        !           381: *
        !           382:          K = K + KB
        !           383:          GO TO 20
        !           384: *
        !           385:       END IF
        !           386: *
        !           387:    40 CONTINUE
        !           388:       WORK( 1 ) = LWKOPT
        !           389:       RETURN
        !           390: *
        !           391: *     End of ZSYTRF_ROOK
        !           392: *
        !           393:       END

CVSweb interface <joel.bertrand@systella.fr>