--- rpl/lapack/lapack/zsytrf_aa_2stage.f 2018/05/29 14:54:04 1.1 +++ rpl/lapack/lapack/zsytrf_aa_2stage.f 2020/05/21 21:46:11 1.2 @@ -38,7 +38,7 @@ *> ZSYTRF_AA_2STAGE computes the factorization of a complex symmetric matrix A *> using the Aasen's algorithm. The form of the factorization is *> -*> A = U*T*U**T or A = L*T*L**T +*> A = U**T*T*U or A = L*T*L**T *> *> where U (or L) is a product of permutation and unit upper (lower) *> triangular matrices, and T is a complex symmetric band matrix with the @@ -93,6 +93,7 @@ *> *> \param[in] LTB *> \verbatim +*> LTB is INTEGER *> The size of the array TB. LTB >= 4*N, internally *> used to select NB such that LTB >= (3*NB+1)*N. *> @@ -112,7 +113,7 @@ *> *> \param[out] IPIV2 *> \verbatim -*> IPIV is INTEGER array, dimension (N) +*> IPIV2 is INTEGER array, dimension (N) *> On exit, it contains the details of the interchanges, i.e., *> the row and column k of T were interchanged with the *> row and column IPIV(k). @@ -125,6 +126,7 @@ *> *> \param[in] LWORK *> \verbatim +*> LWORK is INTEGER *> The size of WORK. LWORK >= N, internally used to select NB *> such that LWORK >= N*NB. *> @@ -273,7 +275,7 @@ IF( UPPER ) THEN * * ..................................................... -* Factorize A as L*D*L**T using the upper triangle of A +* Factorize A as U**T*D*U using the upper triangle of A * ..................................................... * DO J = 0, NT-1 @@ -446,12 +448,14 @@ c END IF * > Apply pivots to previous columns of L CALL ZSWAP( K-1, A( (J+1)*NB+1, I1 ), 1, $ A( (J+1)*NB+1, I2 ), 1 ) -* > Swap A(I1+1:M, I1) with A(I2, I1+1:M) - CALL ZSWAP( I2-I1-1, A( I1, I1+1 ), LDA, - $ A( I1+1, I2 ), 1 ) +* > Swap A(I1+1:M, I1) with A(I2, I1+1:M) + IF( I2.GT.(I1+1) ) + $ CALL ZSWAP( I2-I1-1, A( I1, I1+1 ), LDA, + $ A( I1+1, I2 ), 1 ) * > Swap A(I2+1:M, I1) with A(I2+1:M, I2) - CALL ZSWAP( N-I2, A( I1, I2+1 ), LDA, - $ A( I2, I2+1 ), LDA ) + IF( I2.LT.N ) + $ CALL ZSWAP( N-I2, A( I1, I2+1 ), LDA, + $ A( I2, I2+1 ), LDA ) * > Swap A(I1, I1) with A(I2, I2) PIV = A( I1, I1 ) A( I1, I1 ) = A( I2, I2 ) @@ -635,11 +639,13 @@ c END IF CALL ZSWAP( K-1, A( I1, (J+1)*NB+1 ), LDA, $ A( I2, (J+1)*NB+1 ), LDA ) * > Swap A(I1+1:M, I1) with A(I2, I1+1:M) - CALL ZSWAP( I2-I1-1, A( I1+1, I1 ), 1, - $ A( I2, I1+1 ), LDA ) + IF( I2.GT.(I1+1) ) + $ CALL ZSWAP( I2-I1-1, A( I1+1, I1 ), 1, + $ A( I2, I1+1 ), LDA ) * > Swap A(I2+1:M, I1) with A(I2+1:M, I2) - CALL ZSWAP( N-I2, A( I2+1, I1 ), 1, - $ A( I2+1, I2 ), 1 ) + IF( I2.LT.N ) + $ CALL ZSWAP( N-I2, A( I2+1, I1 ), 1, + $ A( I2+1, I2 ), 1 ) * > Swap A(I1, I1) with A(I2, I2) PIV = A( I1, I1 ) A( I1, I1 ) = A( I2, I2 ) @@ -663,6 +669,8 @@ c $ (J+1)*NB+1, * Factor the band matrix CALL ZGBTRF( N, N, NB, NB, TB, LDTB, IPIV2, INFO ) * + RETURN +* * End of ZSYTRF_AA_2STAGE * END