File:  [local] / rpl / lapack / lapack / zsytrf_aa.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:37 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZSYTRF_AA
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYTRF_AA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_aa.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_aa.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_aa.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            N, LDA, LWORK, INFO
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), WORK( * )
   30: *       ..
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZSYTRF_AA computes the factorization of a complex symmetric matrix A
   38: *> using the Aasen's algorithm.  The form of the factorization is
   39: *>
   40: *>    A = U*T*U**T  or  A = L*T*L**T
   41: *>
   42: *> where U (or L) is a product of permutation and unit upper (lower)
   43: *> triangular matrices, and T is a complex symmetric tridiagonal matrix.
   44: *>
   45: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  Upper triangle of A is stored;
   55: *>          = 'L':  Lower triangle of A is stored.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in,out] A
   65: *> \verbatim
   66: *>          A is COMPLEX*16 array, dimension (LDA,N)
   67: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   68: *>          N-by-N upper triangular part of A contains the upper
   69: *>          triangular part of the matrix A, and the strictly lower
   70: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   71: *>          leading N-by-N lower triangular part of A contains the lower
   72: *>          triangular part of the matrix A, and the strictly upper
   73: *>          triangular part of A is not referenced.
   74: *>
   75: *>          On exit, the tridiagonal matrix is stored in the diagonals
   76: *>          and the subdiagonals of A just below (or above) the diagonals,
   77: *>          and L is stored below (or above) the subdiaonals, when UPLO
   78: *>          is 'L' (or 'U').
   79: *> \endverbatim
   80: *>
   81: *> \param[in] LDA
   82: *> \verbatim
   83: *>          LDA is INTEGER
   84: *>          The leading dimension of the array A.  LDA >= max(1,N).
   85: *> \endverbatim
   86: *>
   87: *> \param[out] IPIV
   88: *> \verbatim
   89: *>          IPIV is INTEGER array, dimension (N)
   90: *>          On exit, it contains the details of the interchanges, i.e.,
   91: *>          the row and column k of A were interchanged with the
   92: *>          row and column IPIV(k).
   93: *> \endverbatim
   94: *>
   95: *> \param[out] WORK
   96: *> \verbatim
   97: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
   98: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LWORK
  102: *> \verbatim
  103: *>          LWORK is INTEGER
  104: *>          The length of WORK. LWORK >=MAX(1,2*N). For optimum performance
  105: *>          LWORK >= N*(1+NB), where NB is the optimal blocksize.
  106: *>
  107: *>          If LWORK = -1, then a workspace query is assumed; the routine
  108: *>          only calculates the optimal size of the WORK array, returns
  109: *>          this value as the first entry of the WORK array, and no error
  110: *>          message related to LWORK is issued by XERBLA.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] INFO
  114: *> \verbatim
  115: *>          INFO is INTEGER
  116: *>          = 0:  successful exit
  117: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  118: *> \endverbatim
  119: *
  120: *  Authors:
  121: *  ========
  122: *
  123: *> \author Univ. of Tennessee
  124: *> \author Univ. of California Berkeley
  125: *> \author Univ. of Colorado Denver
  126: *> \author NAG Ltd.
  127: *
  128: *> \date November 2017
  129: *
  130: *> \ingroup complex16SYcomputational
  131: *
  132: *  =====================================================================
  133:       SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
  134: *
  135: *  -- LAPACK computational routine (version 3.8.0) --
  136: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  137: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138: *     November 2017
  139: *
  140:       IMPLICIT NONE
  141: *
  142: *     .. Scalar Arguments ..
  143:       CHARACTER          UPLO
  144:       INTEGER            N, LDA, LWORK, INFO
  145: *     ..
  146: *     .. Array Arguments ..
  147:       INTEGER            IPIV( * )
  148:       COMPLEX*16         A( LDA, * ), WORK( * )
  149: *     ..
  150: *
  151: *  =====================================================================
  152: *     .. Parameters ..
  153:       COMPLEX*16         ZERO, ONE
  154:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  155: *
  156: *     .. Local Scalars ..
  157:       LOGICAL            LQUERY, UPPER
  158:       INTEGER            J, LWKOPT
  159:       INTEGER            NB, MJ, NJ, K1, K2, J1, J2, J3, JB
  160:       COMPLEX*16         ALPHA
  161: *     ..
  162: *     .. External Functions ..
  163:       LOGICAL            LSAME
  164:       INTEGER            ILAENV
  165:       EXTERNAL           LSAME, ILAENV
  166: *     ..
  167: *     .. External Subroutines ..
  168:       EXTERNAL           ZLASYF_AA, ZGEMM, ZGEMV, ZSCAL, ZCOPY,
  169:      $                   ZSWAP, XERBLA
  170: *     ..
  171: *     .. Intrinsic Functions ..
  172:       INTRINSIC          MAX
  173: *     ..
  174: *     .. Executable Statements ..
  175: *
  176: *     Determine the block size
  177: *
  178:       NB = ILAENV( 1, 'ZSYTRF_AA', UPLO, N, -1, -1, -1 )
  179: *
  180: *     Test the input parameters.
  181: *
  182:       INFO = 0
  183:       UPPER = LSAME( UPLO, 'U' )
  184:       LQUERY = ( LWORK.EQ.-1 )
  185:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  186:          INFO = -1
  187:       ELSE IF( N.LT.0 ) THEN
  188:          INFO = -2
  189:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  190:          INFO = -4
  191:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  192:          INFO = -7
  193:       END IF
  194: *
  195:       IF( INFO.EQ.0 ) THEN
  196:          LWKOPT = (NB+1)*N
  197:          WORK( 1 ) = LWKOPT
  198:       END IF
  199: *
  200:       IF( INFO.NE.0 ) THEN
  201:          CALL XERBLA( 'ZSYTRF_AA', -INFO )
  202:          RETURN
  203:       ELSE IF( LQUERY ) THEN
  204:          RETURN
  205:       END IF
  206: *
  207: *     Quick return
  208: *
  209:       IF ( N.EQ.0 ) THEN
  210:           RETURN
  211:       ENDIF
  212:       IPIV( 1 ) = 1
  213:       IF ( N.EQ.1 ) THEN
  214:          RETURN
  215:       END IF
  216: *
  217: *     Adjust block size based on the workspace size
  218: *
  219:       IF( LWORK.LT.((1+NB)*N) ) THEN
  220:          NB = ( LWORK-N ) / N
  221:       END IF
  222: *
  223:       IF( UPPER ) THEN
  224: *
  225: *        .....................................................
  226: *        Factorize A as L*D*L**T using the upper triangle of A
  227: *        .....................................................
  228: *
  229: *        Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
  230: *
  231:          CALL ZCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
  232: *
  233: *        J is the main loop index, increasing from 1 to N in steps of
  234: *        JB, where JB is the number of columns factorized by ZLASYF;
  235: *        JB is either NB, or N-J+1 for the last block
  236: *
  237:          J = 0
  238:  10      CONTINUE
  239:          IF( J.GE.N )
  240:      $      GO TO 20
  241: *
  242: *        each step of the main loop
  243: *         J is the last column of the previous panel
  244: *         J1 is the first column of the current panel
  245: *         K1 identifies if the previous column of the panel has been
  246: *          explicitly stored, e.g., K1=1 for the first panel, and
  247: *          K1=0 for the rest
  248: *
  249:          J1 = J + 1
  250:          JB = MIN( N-J1+1, NB )
  251:          K1 = MAX(1, J)-J
  252: *
  253: *        Panel factorization
  254: *
  255:          CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
  256:      $                   A( MAX(1, J), J+1 ), LDA,
  257:      $                   IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
  258: *
  259: *        Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  260: *
  261:          DO J2 = J+2, MIN(N, J+JB+1)
  262:             IPIV( J2 ) = IPIV( J2 ) + J
  263:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  264:                CALL ZSWAP( J1-K1-2, A( 1, J2 ), 1,
  265:      $                              A( 1, IPIV(J2) ), 1 )
  266:             END IF
  267:          END DO
  268:          J = J + JB
  269: *
  270: *        Trailing submatrix update, where
  271: *         the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
  272: *         WORK stores the current block of the auxiriarly matrix H
  273: *
  274:          IF( J.LT.N ) THEN
  275: *
  276: *           If first panel and JB=1 (NB=1), then nothing to do
  277: *
  278:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  279: *
  280: *              Merge rank-1 update with BLAS-3 update
  281: *
  282:                ALPHA = A( J, J+1 )
  283:                A( J, J+1 ) = ONE
  284:                CALL ZCOPY( N-J, A( J-1, J+1 ), LDA,
  285:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
  286:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  287: *
  288: *              K1 identifies if the previous column of the panel has been
  289: *               explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
  290: *               while K1=0 and K2=1 for the rest
  291: *
  292:                IF( J1.GT.1 ) THEN
  293: *
  294: *                 Not first panel
  295: *
  296:                   K2 = 1
  297:                ELSE
  298: *
  299: *                 First panel
  300: *
  301:                   K2 = 0
  302: *
  303: *                 First update skips the first column
  304: *
  305:                   JB = JB - 1
  306:                END IF
  307: *
  308:                DO J2 = J+1, N, NB
  309:                   NJ = MIN( NB, N-J2+1 )
  310: *
  311: *                 Update (J2, J2) diagonal block with ZGEMV
  312: *
  313:                   J3 = J2
  314:                   DO MJ = NJ-1, 1, -1
  315:                      CALL ZGEMV( 'No transpose', MJ, JB+1,
  316:      $                          -ONE, WORK( J3-J1+1+K1*N ), N,
  317:      $                                A( J1-K2, J3 ), 1,
  318:      $                           ONE, A( J3, J3 ), LDA )
  319:                      J3 = J3 + 1
  320:                   END DO
  321: *
  322: *                 Update off-diagonal block of J2-th block row with ZGEMM
  323: *
  324:                   CALL ZGEMM( 'Transpose', 'Transpose',
  325:      $                        NJ, N-J3+1, JB+1,
  326:      $                       -ONE, A( J1-K2, J2 ), LDA,
  327:      $                             WORK( J3-J1+1+K1*N ), N,
  328:      $                        ONE, A( J2, J3 ), LDA )
  329:                END DO
  330: *
  331: *              Recover T( J, J+1 )
  332: *
  333:                A( J, J+1 ) = ALPHA
  334:             END IF
  335: *
  336: *           WORK(J+1, 1) stores H(J+1, 1)
  337: *
  338:             CALL ZCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
  339:          END IF
  340:          GO TO 10
  341:       ELSE
  342: *
  343: *        .....................................................
  344: *        Factorize A as L*D*L**T using the lower triangle of A
  345: *        .....................................................
  346: *
  347: *        copy first column A(1:N, 1) into H(1:N, 1)
  348: *         (stored in WORK(1:N))
  349: *
  350:          CALL ZCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
  351: *
  352: *        J is the main loop index, increasing from 1 to N in steps of
  353: *        JB, where JB is the number of columns factorized by ZLASYF;
  354: *        JB is either NB, or N-J+1 for the last block
  355: *
  356:          J = 0
  357:  11      CONTINUE
  358:          IF( J.GE.N )
  359:      $      GO TO 20
  360: *
  361: *        each step of the main loop
  362: *         J is the last column of the previous panel
  363: *         J1 is the first column of the current panel
  364: *         K1 identifies if the previous column of the panel has been
  365: *          explicitly stored, e.g., K1=1 for the first panel, and
  366: *          K1=0 for the rest
  367: *
  368:          J1 = J+1
  369:          JB = MIN( N-J1+1, NB )
  370:          K1 = MAX(1, J)-J
  371: *
  372: *        Panel factorization
  373: *
  374:          CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
  375:      $                   A( J+1, MAX(1, J) ), LDA,
  376:      $                   IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
  377: *
  378: *        Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  379: *
  380:          DO J2 = J+2, MIN(N, J+JB+1)
  381:             IPIV( J2 ) = IPIV( J2 ) + J
  382:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  383:                CALL ZSWAP( J1-K1-2, A( J2, 1 ), LDA,
  384:      $                              A( IPIV(J2), 1 ), LDA )
  385:             END IF
  386:          END DO
  387:          J = J + JB
  388: *
  389: *        Trailing submatrix update, where
  390: *          A(J2+1, J1-1) stores L(J2+1, J1) and
  391: *          WORK(J2+1, 1) stores H(J2+1, 1)
  392: *
  393:          IF( J.LT.N ) THEN
  394: *
  395: *           if first panel and JB=1 (NB=1), then nothing to do
  396: *
  397:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  398: *
  399: *              Merge rank-1 update with BLAS-3 update
  400: *
  401:                ALPHA = A( J+1, J )
  402:                A( J+1, J ) = ONE
  403:                CALL ZCOPY( N-J, A( J+1, J-1 ), 1,
  404:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
  405:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  406: *
  407: *              K1 identifies if the previous column of the panel has been
  408: *               explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
  409: *               while K1=0 and K2=1 for the rest
  410: *
  411:                IF( J1.GT.1 ) THEN
  412: *
  413: *                 Not first panel
  414: *
  415:                   K2 = 1
  416:                ELSE
  417: *
  418: *                 First panel
  419: *
  420:                   K2 = 0
  421: *
  422: *                 First update skips the first column
  423: *
  424:                   JB = JB - 1
  425:                END IF
  426: *
  427:                DO J2 = J+1, N, NB
  428:                   NJ = MIN( NB, N-J2+1 )
  429: *
  430: *                 Update (J2, J2) diagonal block with ZGEMV
  431: *
  432:                   J3 = J2
  433:                   DO MJ = NJ-1, 1, -1
  434:                      CALL ZGEMV( 'No transpose', MJ, JB+1,
  435:      $                          -ONE, WORK( J3-J1+1+K1*N ), N,
  436:      $                                A( J3, J1-K2 ), LDA,
  437:      $                           ONE, A( J3, J3 ), 1 )
  438:                      J3 = J3 + 1
  439:                   END DO
  440: *
  441: *                 Update off-diagonal block in J2-th block column with ZGEMM
  442: *
  443:                   CALL ZGEMM( 'No transpose', 'Transpose',
  444:      $                        N-J3+1, NJ, JB+1,
  445:      $                       -ONE, WORK( J3-J1+1+K1*N ), N,
  446:      $                             A( J2, J1-K2 ), LDA,
  447:      $                        ONE, A( J3, J2 ), LDA )
  448:                END DO
  449: *
  450: *              Recover T( J+1, J )
  451: *
  452:                A( J+1, J ) = ALPHA
  453:             END IF
  454: *
  455: *           WORK(J+1, 1) stores H(J+1, 1)
  456: *
  457:             CALL ZCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
  458:          END IF
  459:          GO TO 11
  460:       END IF
  461: *
  462:    20 CONTINUE
  463:       RETURN
  464: *
  465: *     End of ZSYTRF_AA
  466: *
  467:       END

CVSweb interface <joel.bertrand@systella.fr>