File:  [local] / rpl / lapack / lapack / zsytrf_aa.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:02:56 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Ajout des nouveaux fichiers pour lapack 3.7.0.

    1: *> \brief \b ZSYTRF_AA
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYTRF_AA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_aa.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_aa.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_aa.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            N, LDA, LWORK, INFO
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), WORK( * )
   30: *       ..
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZSYTRF_AA computes the factorization of a complex symmetric matrix A
   38: *> using the Aasen's algorithm.  The form of the factorization is
   39: *>
   40: *>    A = U*T*U**T  or  A = L*T*L**T
   41: *>
   42: *> where U (or L) is a product of permutation and unit upper (lower)
   43: *> triangular matrices, and T is a complex symmetric tridiagonal matrix.
   44: *>
   45: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  Upper triangle of A is stored;
   55: *>          = 'L':  Lower triangle of A is stored.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in,out] A
   65: *> \verbatim
   66: *>          A is COMPLEX*16 array, dimension (LDA,N)
   67: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   68: *>          N-by-N upper triangular part of A contains the upper
   69: *>          triangular part of the matrix A, and the strictly lower
   70: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   71: *>          leading N-by-N lower triangular part of A contains the lower
   72: *>          triangular part of the matrix A, and the strictly upper
   73: *>          triangular part of A is not referenced.
   74: *>
   75: *>          On exit, the tridiagonal matrix is stored in the diagonals
   76: *>          and the subdiagonals of A just below (or above) the diagonals,
   77: *>          and L is stored below (or above) the subdiaonals, when UPLO
   78: *>          is 'L' (or 'U').
   79: *> \endverbatim
   80: *>
   81: *> \param[in] LDA
   82: *> \verbatim
   83: *>          LDA is INTEGER
   84: *>          The leading dimension of the array A.  LDA >= max(1,N).
   85: *> \endverbatim
   86: *>
   87: *> \param[out] IPIV
   88: *> \verbatim
   89: *>          IPIV is INTEGER array, dimension (N)
   90: *>          On exit, it contains the details of the interchanges, i.e.,
   91: *>          the row and column k of A were interchanged with the
   92: *>          row and column IPIV(k).
   93: *> \endverbatim
   94: *>
   95: *> \param[out] WORK
   96: *> \verbatim
   97: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
   98: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LWORK
  102: *> \verbatim
  103: *>          LWORK is INTEGER
  104: *>          The length of WORK. LWORK >=MAX(1,2*N). For optimum performance
  105: *>          LWORK >= N*(1+NB), where NB is the optimal blocksize.
  106: *>
  107: *>          If LWORK = -1, then a workspace query is assumed; the routine
  108: *>          only calculates the optimal size of the WORK array, returns
  109: *>          this value as the first entry of the WORK array, and no error
  110: *>          message related to LWORK is issued by XERBLA.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] INFO
  114: *> \verbatim
  115: *>          INFO is INTEGER
  116: *>          = 0:  successful exit
  117: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  118: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
  119: *>                has been completed, but the block diagonal matrix D is
  120: *>                exactly singular, and division by zero will occur if it
  121: *>                is used to solve a system of equations.
  122: *> \endverbatim
  123: *
  124: *  Authors:
  125: *  ========
  126: *
  127: *> \author Univ. of Tennessee
  128: *> \author Univ. of California Berkeley
  129: *> \author Univ. of Colorado Denver
  130: *> \author NAG Ltd.
  131: *
  132: *> \date December 2016
  133: *
  134: *> \ingroup complex16SYcomputational
  135: *
  136: *  =====================================================================
  137:       SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
  138: *
  139: *  -- LAPACK computational routine (version 3.7.0) --
  140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142: *     December 2016
  143: *
  144:       IMPLICIT NONE
  145: *
  146: *     .. Scalar Arguments ..
  147:       CHARACTER          UPLO
  148:       INTEGER            N, LDA, LWORK, INFO
  149: *     ..
  150: *     .. Array Arguments ..
  151:       INTEGER            IPIV( * )
  152:       COMPLEX*16         A( LDA, * ), WORK( * )
  153: *     ..
  154: *
  155: *  =====================================================================
  156: *     .. Parameters ..
  157:       COMPLEX*16         ZERO, ONE
  158:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  159: *
  160: *     .. Local Scalars ..
  161:       LOGICAL            LQUERY, UPPER
  162:       INTEGER            J, LWKOPT, IINFO
  163:       INTEGER            NB, MJ, NJ, K1, K2, J1, J2, J3, JB
  164:       COMPLEX*16         ALPHA
  165: *     ..
  166: *     .. External Functions ..
  167:       LOGICAL            LSAME
  168:       INTEGER            ILAENV
  169:       EXTERNAL           LSAME, ILAENV
  170: *     ..
  171: *     .. External Subroutines ..
  172:       EXTERNAL           XERBLA
  173: *     ..
  174: *     .. Intrinsic Functions ..
  175:       INTRINSIC          MAX
  176: *     ..
  177: *     .. Executable Statements ..
  178: *
  179: *     Determine the block size
  180: *
  181:       NB = ILAENV( 1, 'ZSYTRF', UPLO, N, -1, -1, -1 )
  182: *
  183: *     Test the input parameters.
  184: *
  185:       INFO = 0
  186:       UPPER = LSAME( UPLO, 'U' )
  187:       LQUERY = ( LWORK.EQ.-1 )
  188:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  189:          INFO = -1
  190:       ELSE IF( N.LT.0 ) THEN
  191:          INFO = -2
  192:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  193:          INFO = -4
  194:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  195:          INFO = -7
  196:       END IF
  197: *
  198:       IF( INFO.EQ.0 ) THEN
  199:          LWKOPT = (NB+1)*N
  200:          WORK( 1 ) = LWKOPT
  201:       END IF
  202: *
  203:       IF( INFO.NE.0 ) THEN
  204:          CALL XERBLA( 'ZSYTRF_AA', -INFO )
  205:          RETURN
  206:       ELSE IF( LQUERY ) THEN
  207:          RETURN
  208:       END IF
  209: *
  210: *     Quick return
  211: *
  212:       IF ( N.EQ.0 ) THEN
  213:           RETURN
  214:       ENDIF
  215:       IPIV( 1 ) = 1
  216:       IF ( N.EQ.1 ) THEN
  217:          IF ( A( 1, 1 ).EQ.ZERO ) THEN
  218:             INFO = 1
  219:          END IF
  220:          RETURN
  221:       END IF
  222: *
  223: *     Adjubst block size based on the workspace size
  224: *
  225:       IF( LWORK.LT.((1+NB)*N) ) THEN
  226:          NB = ( LWORK-N ) / N
  227:       END IF
  228: *
  229:       IF( UPPER ) THEN
  230: *
  231: *        .....................................................
  232: *        Factorize A as L*D*L**T using the upper triangle of A
  233: *        .....................................................
  234: *
  235: *        Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
  236: *
  237:          CALL ZCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
  238: *
  239: *        J is the main loop index, increasing from 1 to N in steps of
  240: *        JB, where JB is the number of columns factorized by ZLASYF;
  241: *        JB is either NB, or N-J+1 for the last block
  242: *
  243:          J = 0
  244:  10      CONTINUE
  245:          IF( J.GE.N )
  246:      $      GO TO 20
  247: *
  248: *        each step of the main loop
  249: *         J is the last column of the previous panel
  250: *         J1 is the first column of the current panel
  251: *         K1 identifies if the previous column of the panel has been
  252: *          explicitly stored, e.g., K1=1 for the first panel, and
  253: *          K1=0 for the rest
  254: *
  255:          J1 = J + 1
  256:          JB = MIN( N-J1+1, NB )
  257:          K1 = MAX(1, J)-J
  258: *
  259: *        Panel factorization
  260: *
  261:          CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
  262:      $                   A( MAX(1, J), J+1 ), LDA,
  263:      $                   IPIV( J+1 ), WORK, N, WORK( N*NB+1 ),
  264:      $                      IINFO )
  265:          IF( (IINFO.GT.0) .AND. (INFO.EQ.0) ) THEN
  266:              INFO = IINFO+J
  267:          ENDIF
  268: *
  269: *        Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  270: *
  271:          DO J2 = J+2, MIN(N, J+JB+1)
  272:             IPIV( J2 ) = IPIV( J2 ) + J
  273:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  274:                CALL ZSWAP( J1-K1-2, A( 1, J2 ), 1,
  275:      $                              A( 1, IPIV(J2) ), 1 )
  276:             END IF
  277:          END DO
  278:          J = J + JB
  279: *
  280: *        Trailing submatrix update, where
  281: *         the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
  282: *         WORK stores the current block of the auxiriarly matrix H
  283: *
  284:          IF( J.LT.N ) THEN
  285: *
  286: *           If first panel and JB=1 (NB=1), then nothing to do
  287: *
  288:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  289: *
  290: *              Merge rank-1 update with BLAS-3 update
  291: *
  292:                ALPHA = A( J, J+1 )
  293:                A( J, J+1 ) = ONE
  294:                CALL ZCOPY( N-J, A( J-1, J+1 ), LDA,
  295:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
  296:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  297: *
  298: *              K1 identifies if the previous column of the panel has been
  299: *               explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
  300: *               while K1=0 and K2=1 for the rest
  301: *
  302:                IF( J1.GT.1 ) THEN
  303: *
  304: *                 Not first panel
  305: *
  306:                   K2 = 1
  307:                ELSE
  308: *
  309: *                 First panel
  310: *
  311:                   K2 = 0
  312: *
  313: *                 First update skips the first column
  314: *
  315:                   JB = JB - 1
  316:                END IF
  317: *
  318:                DO J2 = J+1, N, NB
  319:                   NJ = MIN( NB, N-J2+1 )
  320: *
  321: *                 Update (J2, J2) diagonal block with ZGEMV
  322: *
  323:                   J3 = J2
  324:                   DO MJ = NJ-1, 1, -1
  325:                      CALL ZGEMV( 'No transpose', MJ, JB+1,
  326:      $                          -ONE, WORK( J3-J1+1+K1*N ), N,
  327:      $                                A( J1-K2, J3 ), 1,
  328:      $                           ONE, A( J3, J3 ), LDA )
  329:                      J3 = J3 + 1
  330:                   END DO
  331: *
  332: *                 Update off-diagonal block of J2-th block row with ZGEMM
  333: *
  334:                   CALL ZGEMM( 'Transpose', 'Transpose',
  335:      $                        NJ, N-J3+1, JB+1,
  336:      $                       -ONE, A( J1-K2, J2 ), LDA,
  337:      $                             WORK( J3-J1+1+K1*N ), N,
  338:      $                        ONE, A( J2, J3 ), LDA )
  339:                END DO
  340: *
  341: *              Recover T( J, J+1 )
  342: *
  343:                A( J, J+1 ) = ALPHA
  344:             END IF
  345: *
  346: *           WORK(J+1, 1) stores H(J+1, 1)
  347: *
  348:             CALL ZCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
  349:          END IF
  350:          GO TO 10
  351:       ELSE
  352: *
  353: *        .....................................................
  354: *        Factorize A as L*D*L**T using the lower triangle of A
  355: *        .....................................................
  356: *
  357: *        copy first column A(1:N, 1) into H(1:N, 1)
  358: *         (stored in WORK(1:N))
  359: *
  360:          CALL ZCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
  361: *
  362: *        J is the main loop index, increasing from 1 to N in steps of
  363: *        JB, where JB is the number of columns factorized by ZLASYF;
  364: *        JB is either NB, or N-J+1 for the last block
  365: *
  366:          J = 0
  367:  11      CONTINUE
  368:          IF( J.GE.N )
  369:      $      GO TO 20
  370: *
  371: *        each step of the main loop
  372: *         J is the last column of the previous panel
  373: *         J1 is the first column of the current panel
  374: *         K1 identifies if the previous column of the panel has been
  375: *          explicitly stored, e.g., K1=1 for the first panel, and
  376: *          K1=0 for the rest
  377: *
  378:          J1 = J+1
  379:          JB = MIN( N-J1+1, NB )
  380:          K1 = MAX(1, J)-J
  381: *
  382: *        Panel factorization
  383: *
  384:          CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
  385:      $                   A( J+1, MAX(1, J) ), LDA,
  386:      $                   IPIV( J+1 ), WORK, N, WORK( N*NB+1 ), IINFO)
  387:          IF( (IINFO.GT.0) .AND. (INFO.EQ.0) ) THEN
  388:             INFO = IINFO+J
  389:          ENDIF
  390: *
  391: *        Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  392: *
  393:          DO J2 = J+2, MIN(N, J+JB+1)
  394:             IPIV( J2 ) = IPIV( J2 ) + J
  395:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  396:                CALL ZSWAP( J1-K1-2, A( J2, 1 ), LDA,
  397:      $                              A( IPIV(J2), 1 ), LDA )
  398:             END IF
  399:          END DO
  400:          J = J + JB
  401: *
  402: *        Trailing submatrix update, where
  403: *          A(J2+1, J1-1) stores L(J2+1, J1) and
  404: *          WORK(J2+1, 1) stores H(J2+1, 1)
  405: *
  406:          IF( J.LT.N ) THEN
  407: *
  408: *           if first panel and JB=1 (NB=1), then nothing to do
  409: *
  410:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  411: *
  412: *              Merge rank-1 update with BLAS-3 update
  413: *
  414:                ALPHA = A( J+1, J )
  415:                A( J+1, J ) = ONE
  416:                CALL ZCOPY( N-J, A( J+1, J-1 ), 1,
  417:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
  418:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  419: *
  420: *              K1 identifies if the previous column of the panel has been
  421: *               explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
  422: *               while K1=0 and K2=1 for the rest
  423: *
  424:                IF( J1.GT.1 ) THEN
  425: *
  426: *                 Not first panel
  427: *
  428:                   K2 = 1
  429:                ELSE
  430: *
  431: *                 First panel
  432: *
  433:                   K2 = 0
  434: *
  435: *                 First update skips the first column
  436: *
  437:                   JB = JB - 1
  438:                END IF
  439: *
  440:                DO J2 = J+1, N, NB
  441:                   NJ = MIN( NB, N-J2+1 )
  442: *
  443: *                 Update (J2, J2) diagonal block with ZGEMV
  444: *
  445:                   J3 = J2
  446:                   DO MJ = NJ-1, 1, -1
  447:                      CALL ZGEMV( 'No transpose', MJ, JB+1,
  448:      $                          -ONE, WORK( J3-J1+1+K1*N ), N,
  449:      $                                A( J3, J1-K2 ), LDA,
  450:      $                           ONE, A( J3, J3 ), 1 )
  451:                      J3 = J3 + 1
  452:                   END DO
  453: *
  454: *                 Update off-diagonal block in J2-th block column with ZGEMM
  455: *
  456:                   CALL ZGEMM( 'No transpose', 'Transpose',
  457:      $                        N-J3+1, NJ, JB+1,
  458:      $                       -ONE, WORK( J3-J1+1+K1*N ), N,
  459:      $                             A( J2, J1-K2 ), LDA,
  460:      $                        ONE, A( J3, J2 ), LDA )
  461:                END DO
  462: *
  463: *              Recover T( J+1, J )
  464: *
  465:                A( J+1, J ) = ALPHA
  466:             END IF
  467: *
  468: *           WORK(J+1, 1) stores H(J+1, 1)
  469: *
  470:             CALL ZCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
  471:          END IF
  472:          GO TO 11
  473:       END IF
  474: *
  475:    20 CONTINUE
  476:       RETURN
  477: *
  478: *     End of ZSYTRF_AA
  479: *
  480:       END

CVSweb interface <joel.bertrand@systella.fr>