Annotation of rpl/lapack/lapack/zsytrf_aa.f, revision 1.6

1.1       bertrand    1: *> \brief \b ZSYTRF_AA
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZSYTRF_AA + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_aa.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_aa.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_aa.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                     22: *
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            N, LDA, LWORK, INFO
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       COMPLEX*16         A( LDA, * ), WORK( * )
                     30: *       ..
                     31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> ZSYTRF_AA computes the factorization of a complex symmetric matrix A
                     38: *> using the Aasen's algorithm.  The form of the factorization is
                     39: *>
1.5       bertrand   40: *>    A = U**T*T*U  or  A = L*T*L**T
1.1       bertrand   41: *>
                     42: *> where U (or L) is a product of permutation and unit upper (lower)
                     43: *> triangular matrices, and T is a complex symmetric tridiagonal matrix.
                     44: *>
                     45: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
                     46: *> \endverbatim
                     47: *
                     48: *  Arguments:
                     49: *  ==========
                     50: *
                     51: *> \param[in] UPLO
                     52: *> \verbatim
                     53: *>          UPLO is CHARACTER*1
                     54: *>          = 'U':  Upper triangle of A is stored;
                     55: *>          = 'L':  Lower triangle of A is stored.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The order of the matrix A.  N >= 0.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in,out] A
                     65: *> \verbatim
                     66: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     67: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     68: *>          N-by-N upper triangular part of A contains the upper
                     69: *>          triangular part of the matrix A, and the strictly lower
                     70: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     71: *>          leading N-by-N lower triangular part of A contains the lower
                     72: *>          triangular part of the matrix A, and the strictly upper
                     73: *>          triangular part of A is not referenced.
                     74: *>
                     75: *>          On exit, the tridiagonal matrix is stored in the diagonals
                     76: *>          and the subdiagonals of A just below (or above) the diagonals,
                     77: *>          and L is stored below (or above) the subdiaonals, when UPLO
                     78: *>          is 'L' (or 'U').
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] LDA
                     82: *> \verbatim
                     83: *>          LDA is INTEGER
                     84: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[out] IPIV
                     88: *> \verbatim
                     89: *>          IPIV is INTEGER array, dimension (N)
                     90: *>          On exit, it contains the details of the interchanges, i.e.,
                     91: *>          the row and column k of A were interchanged with the
                     92: *>          row and column IPIV(k).
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[out] WORK
                     96: *> \verbatim
                     97: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     98: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] LWORK
                    102: *> \verbatim
                    103: *>          LWORK is INTEGER
                    104: *>          The length of WORK. LWORK >=MAX(1,2*N). For optimum performance
                    105: *>          LWORK >= N*(1+NB), where NB is the optimal blocksize.
                    106: *>
                    107: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    108: *>          only calculates the optimal size of the WORK array, returns
                    109: *>          this value as the first entry of the WORK array, and no error
                    110: *>          message related to LWORK is issued by XERBLA.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[out] INFO
                    114: *> \verbatim
                    115: *>          INFO is INTEGER
                    116: *>          = 0:  successful exit
1.3       bertrand  117: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
1.1       bertrand  118: *> \endverbatim
                    119: *
                    120: *  Authors:
                    121: *  ========
                    122: *
                    123: *> \author Univ. of Tennessee
                    124: *> \author Univ. of California Berkeley
                    125: *> \author Univ. of Colorado Denver
                    126: *> \author NAG Ltd.
                    127: *
                    128: *> \ingroup complex16SYcomputational
                    129: *
                    130: *  =====================================================================
                    131:       SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
                    132: *
1.6     ! bertrand  133: *  -- LAPACK computational routine --
1.1       bertrand  134: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    135: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    136: *
                    137:       IMPLICIT NONE
                    138: *
                    139: *     .. Scalar Arguments ..
                    140:       CHARACTER          UPLO
                    141:       INTEGER            N, LDA, LWORK, INFO
                    142: *     ..
                    143: *     .. Array Arguments ..
                    144:       INTEGER            IPIV( * )
                    145:       COMPLEX*16         A( LDA, * ), WORK( * )
                    146: *     ..
                    147: *
                    148: *  =====================================================================
                    149: *     .. Parameters ..
                    150:       COMPLEX*16         ZERO, ONE
                    151:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    152: *
                    153: *     .. Local Scalars ..
                    154:       LOGICAL            LQUERY, UPPER
1.3       bertrand  155:       INTEGER            J, LWKOPT
1.1       bertrand  156:       INTEGER            NB, MJ, NJ, K1, K2, J1, J2, J3, JB
                    157:       COMPLEX*16         ALPHA
                    158: *     ..
                    159: *     .. External Functions ..
                    160:       LOGICAL            LSAME
                    161:       INTEGER            ILAENV
                    162:       EXTERNAL           LSAME, ILAENV
                    163: *     ..
                    164: *     .. External Subroutines ..
1.3       bertrand  165:       EXTERNAL           ZLASYF_AA, ZGEMM, ZGEMV, ZSCAL, ZCOPY,
                    166:      $                   ZSWAP, XERBLA
1.1       bertrand  167: *     ..
                    168: *     .. Intrinsic Functions ..
                    169:       INTRINSIC          MAX
                    170: *     ..
                    171: *     .. Executable Statements ..
                    172: *
                    173: *     Determine the block size
                    174: *
1.3       bertrand  175:       NB = ILAENV( 1, 'ZSYTRF_AA', UPLO, N, -1, -1, -1 )
1.1       bertrand  176: *
                    177: *     Test the input parameters.
                    178: *
                    179:       INFO = 0
                    180:       UPPER = LSAME( UPLO, 'U' )
                    181:       LQUERY = ( LWORK.EQ.-1 )
                    182:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    183:          INFO = -1
                    184:       ELSE IF( N.LT.0 ) THEN
                    185:          INFO = -2
                    186:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    187:          INFO = -4
                    188:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
                    189:          INFO = -7
                    190:       END IF
                    191: *
                    192:       IF( INFO.EQ.0 ) THEN
                    193:          LWKOPT = (NB+1)*N
                    194:          WORK( 1 ) = LWKOPT
                    195:       END IF
                    196: *
                    197:       IF( INFO.NE.0 ) THEN
                    198:          CALL XERBLA( 'ZSYTRF_AA', -INFO )
                    199:          RETURN
                    200:       ELSE IF( LQUERY ) THEN
                    201:          RETURN
                    202:       END IF
                    203: *
                    204: *     Quick return
                    205: *
                    206:       IF ( N.EQ.0 ) THEN
                    207:           RETURN
                    208:       ENDIF
                    209:       IPIV( 1 ) = 1
                    210:       IF ( N.EQ.1 ) THEN
                    211:          RETURN
                    212:       END IF
                    213: *
1.3       bertrand  214: *     Adjust block size based on the workspace size
1.1       bertrand  215: *
                    216:       IF( LWORK.LT.((1+NB)*N) ) THEN
                    217:          NB = ( LWORK-N ) / N
                    218:       END IF
                    219: *
                    220:       IF( UPPER ) THEN
                    221: *
                    222: *        .....................................................
1.5       bertrand  223: *        Factorize A as U**T*D*U using the upper triangle of A
1.1       bertrand  224: *        .....................................................
                    225: *
                    226: *        Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
                    227: *
                    228:          CALL ZCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
                    229: *
                    230: *        J is the main loop index, increasing from 1 to N in steps of
                    231: *        JB, where JB is the number of columns factorized by ZLASYF;
                    232: *        JB is either NB, or N-J+1 for the last block
                    233: *
                    234:          J = 0
                    235:  10      CONTINUE
                    236:          IF( J.GE.N )
                    237:      $      GO TO 20
                    238: *
                    239: *        each step of the main loop
                    240: *         J is the last column of the previous panel
                    241: *         J1 is the first column of the current panel
                    242: *         K1 identifies if the previous column of the panel has been
                    243: *          explicitly stored, e.g., K1=1 for the first panel, and
                    244: *          K1=0 for the rest
                    245: *
                    246:          J1 = J + 1
                    247:          JB = MIN( N-J1+1, NB )
                    248:          K1 = MAX(1, J)-J
                    249: *
                    250: *        Panel factorization
                    251: *
                    252:          CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
                    253:      $                   A( MAX(1, J), J+1 ), LDA,
1.3       bertrand  254:      $                   IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
1.1       bertrand  255: *
1.5       bertrand  256: *        Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
1.1       bertrand  257: *
                    258:          DO J2 = J+2, MIN(N, J+JB+1)
                    259:             IPIV( J2 ) = IPIV( J2 ) + J
                    260:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
                    261:                CALL ZSWAP( J1-K1-2, A( 1, J2 ), 1,
                    262:      $                              A( 1, IPIV(J2) ), 1 )
                    263:             END IF
                    264:          END DO
                    265:          J = J + JB
                    266: *
                    267: *        Trailing submatrix update, where
                    268: *         the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
                    269: *         WORK stores the current block of the auxiriarly matrix H
                    270: *
                    271:          IF( J.LT.N ) THEN
                    272: *
                    273: *           If first panel and JB=1 (NB=1), then nothing to do
                    274: *
                    275:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
                    276: *
                    277: *              Merge rank-1 update with BLAS-3 update
                    278: *
                    279:                ALPHA = A( J, J+1 )
                    280:                A( J, J+1 ) = ONE
                    281:                CALL ZCOPY( N-J, A( J-1, J+1 ), LDA,
                    282:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
                    283:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
                    284: *
                    285: *              K1 identifies if the previous column of the panel has been
                    286: *               explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
                    287: *               while K1=0 and K2=1 for the rest
                    288: *
                    289:                IF( J1.GT.1 ) THEN
                    290: *
                    291: *                 Not first panel
                    292: *
                    293:                   K2 = 1
                    294:                ELSE
                    295: *
                    296: *                 First panel
                    297: *
                    298:                   K2 = 0
                    299: *
                    300: *                 First update skips the first column
                    301: *
                    302:                   JB = JB - 1
                    303:                END IF
                    304: *
                    305:                DO J2 = J+1, N, NB
                    306:                   NJ = MIN( NB, N-J2+1 )
                    307: *
                    308: *                 Update (J2, J2) diagonal block with ZGEMV
                    309: *
                    310:                   J3 = J2
                    311:                   DO MJ = NJ-1, 1, -1
                    312:                      CALL ZGEMV( 'No transpose', MJ, JB+1,
                    313:      $                          -ONE, WORK( J3-J1+1+K1*N ), N,
                    314:      $                                A( J1-K2, J3 ), 1,
                    315:      $                           ONE, A( J3, J3 ), LDA )
                    316:                      J3 = J3 + 1
                    317:                   END DO
                    318: *
                    319: *                 Update off-diagonal block of J2-th block row with ZGEMM
                    320: *
                    321:                   CALL ZGEMM( 'Transpose', 'Transpose',
                    322:      $                        NJ, N-J3+1, JB+1,
                    323:      $                       -ONE, A( J1-K2, J2 ), LDA,
                    324:      $                             WORK( J3-J1+1+K1*N ), N,
                    325:      $                        ONE, A( J2, J3 ), LDA )
                    326:                END DO
                    327: *
                    328: *              Recover T( J, J+1 )
                    329: *
                    330:                A( J, J+1 ) = ALPHA
                    331:             END IF
                    332: *
                    333: *           WORK(J+1, 1) stores H(J+1, 1)
                    334: *
                    335:             CALL ZCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
                    336:          END IF
                    337:          GO TO 10
                    338:       ELSE
                    339: *
                    340: *        .....................................................
                    341: *        Factorize A as L*D*L**T using the lower triangle of A
                    342: *        .....................................................
                    343: *
                    344: *        copy first column A(1:N, 1) into H(1:N, 1)
                    345: *         (stored in WORK(1:N))
                    346: *
                    347:          CALL ZCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
                    348: *
                    349: *        J is the main loop index, increasing from 1 to N in steps of
                    350: *        JB, where JB is the number of columns factorized by ZLASYF;
                    351: *        JB is either NB, or N-J+1 for the last block
                    352: *
                    353:          J = 0
                    354:  11      CONTINUE
                    355:          IF( J.GE.N )
                    356:      $      GO TO 20
                    357: *
                    358: *        each step of the main loop
                    359: *         J is the last column of the previous panel
                    360: *         J1 is the first column of the current panel
                    361: *         K1 identifies if the previous column of the panel has been
                    362: *          explicitly stored, e.g., K1=1 for the first panel, and
                    363: *          K1=0 for the rest
                    364: *
                    365:          J1 = J+1
                    366:          JB = MIN( N-J1+1, NB )
                    367:          K1 = MAX(1, J)-J
                    368: *
                    369: *        Panel factorization
                    370: *
                    371:          CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
                    372:      $                   A( J+1, MAX(1, J) ), LDA,
1.3       bertrand  373:      $                   IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
1.1       bertrand  374: *
1.5       bertrand  375: *        Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
1.1       bertrand  376: *
                    377:          DO J2 = J+2, MIN(N, J+JB+1)
                    378:             IPIV( J2 ) = IPIV( J2 ) + J
                    379:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
                    380:                CALL ZSWAP( J1-K1-2, A( J2, 1 ), LDA,
                    381:      $                              A( IPIV(J2), 1 ), LDA )
                    382:             END IF
                    383:          END DO
                    384:          J = J + JB
                    385: *
                    386: *        Trailing submatrix update, where
                    387: *          A(J2+1, J1-1) stores L(J2+1, J1) and
                    388: *          WORK(J2+1, 1) stores H(J2+1, 1)
                    389: *
                    390:          IF( J.LT.N ) THEN
                    391: *
                    392: *           if first panel and JB=1 (NB=1), then nothing to do
                    393: *
                    394:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
                    395: *
                    396: *              Merge rank-1 update with BLAS-3 update
                    397: *
                    398:                ALPHA = A( J+1, J )
                    399:                A( J+1, J ) = ONE
                    400:                CALL ZCOPY( N-J, A( J+1, J-1 ), 1,
                    401:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
                    402:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
                    403: *
                    404: *              K1 identifies if the previous column of the panel has been
                    405: *               explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
                    406: *               while K1=0 and K2=1 for the rest
                    407: *
                    408:                IF( J1.GT.1 ) THEN
                    409: *
                    410: *                 Not first panel
                    411: *
                    412:                   K2 = 1
                    413:                ELSE
                    414: *
                    415: *                 First panel
                    416: *
                    417:                   K2 = 0
                    418: *
                    419: *                 First update skips the first column
                    420: *
                    421:                   JB = JB - 1
                    422:                END IF
                    423: *
                    424:                DO J2 = J+1, N, NB
                    425:                   NJ = MIN( NB, N-J2+1 )
                    426: *
                    427: *                 Update (J2, J2) diagonal block with ZGEMV
                    428: *
                    429:                   J3 = J2
                    430:                   DO MJ = NJ-1, 1, -1
                    431:                      CALL ZGEMV( 'No transpose', MJ, JB+1,
                    432:      $                          -ONE, WORK( J3-J1+1+K1*N ), N,
                    433:      $                                A( J3, J1-K2 ), LDA,
                    434:      $                           ONE, A( J3, J3 ), 1 )
                    435:                      J3 = J3 + 1
                    436:                   END DO
                    437: *
                    438: *                 Update off-diagonal block in J2-th block column with ZGEMM
                    439: *
                    440:                   CALL ZGEMM( 'No transpose', 'Transpose',
                    441:      $                        N-J3+1, NJ, JB+1,
                    442:      $                       -ONE, WORK( J3-J1+1+K1*N ), N,
                    443:      $                             A( J2, J1-K2 ), LDA,
                    444:      $                        ONE, A( J3, J2 ), LDA )
                    445:                END DO
                    446: *
                    447: *              Recover T( J+1, J )
                    448: *
                    449:                A( J+1, J ) = ALPHA
                    450:             END IF
                    451: *
                    452: *           WORK(J+1, 1) stores H(J+1, 1)
                    453: *
                    454:             CALL ZCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
                    455:          END IF
                    456:          GO TO 11
                    457:       END IF
                    458: *
                    459:    20 CONTINUE
1.6     ! bertrand  460:       WORK( 1 ) = LWKOPT
1.1       bertrand  461:       RETURN
                    462: *
                    463: *     End of ZSYTRF_AA
                    464: *
                    465:       END

CVSweb interface <joel.bertrand@systella.fr>