Annotation of rpl/lapack/lapack/zsytrf.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZSYTRF
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZSYTRF + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       CHARACTER          UPLO
        !            25: *       INTEGER            INFO, LDA, LWORK, N
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       INTEGER            IPIV( * )
        !            29: *       COMPLEX*16         A( LDA, * ), WORK( * )
        !            30: *       ..
        !            31: *  
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> ZSYTRF computes the factorization of a complex symmetric matrix A
        !            39: *> using the Bunch-Kaufman diagonal pivoting method.  The form of the
        !            40: *> factorization is
        !            41: *>
        !            42: *>    A = U*D*U**T  or  A = L*D*L**T
        !            43: *>
        !            44: *> where U (or L) is a product of permutation and unit upper (lower)
        !            45: *> triangular matrices, and D is symmetric and block diagonal with
        !            46: *> with 1-by-1 and 2-by-2 diagonal blocks.
        !            47: *>
        !            48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
        !            49: *> \endverbatim
        !            50: *
        !            51: *  Arguments:
        !            52: *  ==========
        !            53: *
        !            54: *> \param[in] UPLO
        !            55: *> \verbatim
        !            56: *>          UPLO is CHARACTER*1
        !            57: *>          = 'U':  Upper triangle of A is stored;
        !            58: *>          = 'L':  Lower triangle of A is stored.
        !            59: *> \endverbatim
        !            60: *>
        !            61: *> \param[in] N
        !            62: *> \verbatim
        !            63: *>          N is INTEGER
        !            64: *>          The order of the matrix A.  N >= 0.
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in,out] A
        !            68: *> \verbatim
        !            69: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            70: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
        !            71: *>          N-by-N upper triangular part of A contains the upper
        !            72: *>          triangular part of the matrix A, and the strictly lower
        !            73: *>          triangular part of A is not referenced.  If UPLO = 'L', the
        !            74: *>          leading N-by-N lower triangular part of A contains the lower
        !            75: *>          triangular part of the matrix A, and the strictly upper
        !            76: *>          triangular part of A is not referenced.
        !            77: *>
        !            78: *>          On exit, the block diagonal matrix D and the multipliers used
        !            79: *>          to obtain the factor U or L (see below for further details).
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in] LDA
        !            83: *> \verbatim
        !            84: *>          LDA is INTEGER
        !            85: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[out] IPIV
        !            89: *> \verbatim
        !            90: *>          IPIV is INTEGER array, dimension (N)
        !            91: *>          Details of the interchanges and the block structure of D.
        !            92: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
        !            93: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
        !            94: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
        !            95: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
        !            96: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
        !            97: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
        !            98: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[out] WORK
        !           102: *> \verbatim
        !           103: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           104: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] LWORK
        !           108: *> \verbatim
        !           109: *>          LWORK is INTEGER
        !           110: *>          The length of WORK.  LWORK >=1.  For best performance
        !           111: *>          LWORK >= N*NB, where NB is the block size returned by ILAENV.
        !           112: *>
        !           113: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           114: *>          only calculates the optimal size of the WORK array, returns
        !           115: *>          this value as the first entry of the WORK array, and no error
        !           116: *>          message related to LWORK is issued by XERBLA.
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[out] INFO
        !           120: *> \verbatim
        !           121: *>          INFO is INTEGER
        !           122: *>          = 0:  successful exit
        !           123: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           124: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
        !           125: *>                has been completed, but the block diagonal matrix D is
        !           126: *>                exactly singular, and division by zero will occur if it
        !           127: *>                is used to solve a system of equations.
        !           128: *> \endverbatim
        !           129: *
        !           130: *  Authors:
        !           131: *  ========
        !           132: *
        !           133: *> \author Univ. of Tennessee 
        !           134: *> \author Univ. of California Berkeley 
        !           135: *> \author Univ. of Colorado Denver 
        !           136: *> \author NAG Ltd. 
        !           137: *
        !           138: *> \date November 2011
        !           139: *
        !           140: *> \ingroup complex16SYcomputational
        !           141: *
        !           142: *> \par Further Details:
        !           143: *  =====================
        !           144: *>
        !           145: *> \verbatim
        !           146: *>
        !           147: *>  If UPLO = 'U', then A = U*D*U**T, where
        !           148: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
        !           149: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
        !           150: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
        !           151: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
        !           152: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
        !           153: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
        !           154: *>
        !           155: *>             (   I    v    0   )   k-s
        !           156: *>     U(k) =  (   0    I    0   )   s
        !           157: *>             (   0    0    I   )   n-k
        !           158: *>                k-s   s   n-k
        !           159: *>
        !           160: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
        !           161: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
        !           162: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
        !           163: *>
        !           164: *>  If UPLO = 'L', then A = L*D*L**T, where
        !           165: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
        !           166: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
        !           167: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
        !           168: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
        !           169: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
        !           170: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
        !           171: *>
        !           172: *>             (   I    0     0   )  k-1
        !           173: *>     L(k) =  (   0    I     0   )  s
        !           174: *>             (   0    v     I   )  n-k-s+1
        !           175: *>                k-1   s  n-k-s+1
        !           176: *>
        !           177: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
        !           178: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
        !           179: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
        !           180: *> \endverbatim
        !           181: *>
        !           182: *  =====================================================================
1.1       bertrand  183:       SUBROUTINE ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                    184: *
1.9     ! bertrand  185: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  186: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    187: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  188: *     November 2011
1.1       bertrand  189: *
                    190: *     .. Scalar Arguments ..
                    191:       CHARACTER          UPLO
                    192:       INTEGER            INFO, LDA, LWORK, N
                    193: *     ..
                    194: *     .. Array Arguments ..
                    195:       INTEGER            IPIV( * )
                    196:       COMPLEX*16         A( LDA, * ), WORK( * )
                    197: *     ..
                    198: *
                    199: *  =====================================================================
                    200: *
                    201: *     .. Local Scalars ..
                    202:       LOGICAL            LQUERY, UPPER
                    203:       INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
                    204: *     ..
                    205: *     .. External Functions ..
                    206:       LOGICAL            LSAME
                    207:       INTEGER            ILAENV
                    208:       EXTERNAL           LSAME, ILAENV
                    209: *     ..
                    210: *     .. External Subroutines ..
                    211:       EXTERNAL           XERBLA, ZLASYF, ZSYTF2
                    212: *     ..
                    213: *     .. Intrinsic Functions ..
                    214:       INTRINSIC          MAX
                    215: *     ..
                    216: *     .. Executable Statements ..
                    217: *
                    218: *     Test the input parameters.
                    219: *
                    220:       INFO = 0
                    221:       UPPER = LSAME( UPLO, 'U' )
                    222:       LQUERY = ( LWORK.EQ.-1 )
                    223:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    224:          INFO = -1
                    225:       ELSE IF( N.LT.0 ) THEN
                    226:          INFO = -2
                    227:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    228:          INFO = -4
                    229:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    230:          INFO = -7
                    231:       END IF
                    232: *
                    233:       IF( INFO.EQ.0 ) THEN
                    234: *
                    235: *        Determine the block size
                    236: *
                    237:          NB = ILAENV( 1, 'ZSYTRF', UPLO, N, -1, -1, -1 )
                    238:          LWKOPT = N*NB
                    239:          WORK( 1 ) = LWKOPT
                    240:       END IF
                    241: *
                    242:       IF( INFO.NE.0 ) THEN
                    243:          CALL XERBLA( 'ZSYTRF', -INFO )
                    244:          RETURN
                    245:       ELSE IF( LQUERY ) THEN
                    246:          RETURN
                    247:       END IF
                    248: *
                    249:       NBMIN = 2
                    250:       LDWORK = N
                    251:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    252:          IWS = LDWORK*NB
                    253:          IF( LWORK.LT.IWS ) THEN
                    254:             NB = MAX( LWORK / LDWORK, 1 )
                    255:             NBMIN = MAX( 2, ILAENV( 2, 'ZSYTRF', UPLO, N, -1, -1, -1 ) )
                    256:          END IF
                    257:       ELSE
                    258:          IWS = 1
                    259:       END IF
                    260:       IF( NB.LT.NBMIN )
                    261:      $   NB = N
                    262: *
                    263:       IF( UPPER ) THEN
                    264: *
1.8       bertrand  265: *        Factorize A as U*D*U**T using the upper triangle of A
1.1       bertrand  266: *
                    267: *        K is the main loop index, decreasing from N to 1 in steps of
                    268: *        KB, where KB is the number of columns factorized by ZLASYF;
                    269: *        KB is either NB or NB-1, or K for the last block
                    270: *
                    271:          K = N
                    272:    10    CONTINUE
                    273: *
                    274: *        If K < 1, exit from loop
                    275: *
                    276:          IF( K.LT.1 )
                    277:      $      GO TO 40
                    278: *
                    279:          IF( K.GT.NB ) THEN
                    280: *
                    281: *           Factorize columns k-kb+1:k of A and use blocked code to
                    282: *           update columns 1:k-kb
                    283: *
                    284:             CALL ZLASYF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, N, IINFO )
                    285:          ELSE
                    286: *
                    287: *           Use unblocked code to factorize columns 1:k of A
                    288: *
                    289:             CALL ZSYTF2( UPLO, K, A, LDA, IPIV, IINFO )
                    290:             KB = K
                    291:          END IF
                    292: *
                    293: *        Set INFO on the first occurrence of a zero pivot
                    294: *
                    295:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    296:      $      INFO = IINFO
                    297: *
                    298: *        Decrease K and return to the start of the main loop
                    299: *
                    300:          K = K - KB
                    301:          GO TO 10
                    302: *
                    303:       ELSE
                    304: *
1.8       bertrand  305: *        Factorize A as L*D*L**T using the lower triangle of A
1.1       bertrand  306: *
                    307: *        K is the main loop index, increasing from 1 to N in steps of
                    308: *        KB, where KB is the number of columns factorized by ZLASYF;
                    309: *        KB is either NB or NB-1, or N-K+1 for the last block
                    310: *
                    311:          K = 1
                    312:    20    CONTINUE
                    313: *
                    314: *        If K > N, exit from loop
                    315: *
                    316:          IF( K.GT.N )
                    317:      $      GO TO 40
                    318: *
                    319:          IF( K.LE.N-NB ) THEN
                    320: *
                    321: *           Factorize columns k:k+kb-1 of A and use blocked code to
                    322: *           update columns k+kb:n
                    323: *
                    324:             CALL ZLASYF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
                    325:      $                   WORK, N, IINFO )
                    326:          ELSE
                    327: *
                    328: *           Use unblocked code to factorize columns k:n of A
                    329: *
                    330:             CALL ZSYTF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
                    331:             KB = N - K + 1
                    332:          END IF
                    333: *
                    334: *        Set INFO on the first occurrence of a zero pivot
                    335: *
                    336:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    337:      $      INFO = IINFO + K - 1
                    338: *
                    339: *        Adjust IPIV
                    340: *
                    341:          DO 30 J = K, K + KB - 1
                    342:             IF( IPIV( J ).GT.0 ) THEN
                    343:                IPIV( J ) = IPIV( J ) + K - 1
                    344:             ELSE
                    345:                IPIV( J ) = IPIV( J ) - K + 1
                    346:             END IF
                    347:    30    CONTINUE
                    348: *
                    349: *        Increase K and return to the start of the main loop
                    350: *
                    351:          K = K + KB
                    352:          GO TO 20
                    353: *
                    354:       END IF
                    355: *
                    356:    40 CONTINUE
                    357:       WORK( 1 ) = LWKOPT
                    358:       RETURN
                    359: *
                    360: *     End of ZSYTRF
                    361: *
                    362:       END

CVSweb interface <joel.bertrand@systella.fr>