Annotation of rpl/lapack/lapack/zsytrf.f, revision 1.19

1.9       bertrand    1: *> \brief \b ZSYTRF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZSYTRF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
1.15      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, LWORK, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       COMPLEX*16         A( LDA, * ), WORK( * )
                     30: *       ..
1.15      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZSYTRF computes the factorization of a complex symmetric matrix A
                     39: *> using the Bunch-Kaufman diagonal pivoting method.  The form of the
                     40: *> factorization is
                     41: *>
                     42: *>    A = U*D*U**T  or  A = L*D*L**T
                     43: *>
                     44: *> where U (or L) is a product of permutation and unit upper (lower)
                     45: *> triangular matrices, and D is symmetric and block diagonal with
1.18      bertrand   46: *> 1-by-1 and 2-by-2 diagonal blocks.
1.9       bertrand   47: *>
                     48: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] UPLO
                     55: *> \verbatim
                     56: *>          UPLO is CHARACTER*1
                     57: *>          = 'U':  Upper triangle of A is stored;
                     58: *>          = 'L':  Lower triangle of A is stored.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] N
                     62: *> \verbatim
                     63: *>          N is INTEGER
                     64: *>          The order of the matrix A.  N >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in,out] A
                     68: *> \verbatim
                     69: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     70: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     71: *>          N-by-N upper triangular part of A contains the upper
                     72: *>          triangular part of the matrix A, and the strictly lower
                     73: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     74: *>          leading N-by-N lower triangular part of A contains the lower
                     75: *>          triangular part of the matrix A, and the strictly upper
                     76: *>          triangular part of A is not referenced.
                     77: *>
                     78: *>          On exit, the block diagonal matrix D and the multipliers used
                     79: *>          to obtain the factor U or L (see below for further details).
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDA
                     83: *> \verbatim
                     84: *>          LDA is INTEGER
                     85: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[out] IPIV
                     89: *> \verbatim
                     90: *>          IPIV is INTEGER array, dimension (N)
                     91: *>          Details of the interchanges and the block structure of D.
                     92: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     93: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
                     94: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                     95: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                     96: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                     97: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                     98: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[out] WORK
                    102: *> \verbatim
                    103: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    104: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] LWORK
                    108: *> \verbatim
                    109: *>          LWORK is INTEGER
                    110: *>          The length of WORK.  LWORK >=1.  For best performance
                    111: *>          LWORK >= N*NB, where NB is the block size returned by ILAENV.
                    112: *>
                    113: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    114: *>          only calculates the optimal size of the WORK array, returns
                    115: *>          this value as the first entry of the WORK array, and no error
                    116: *>          message related to LWORK is issued by XERBLA.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[out] INFO
                    120: *> \verbatim
                    121: *>          INFO is INTEGER
                    122: *>          = 0:  successful exit
                    123: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    124: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                    125: *>                has been completed, but the block diagonal matrix D is
                    126: *>                exactly singular, and division by zero will occur if it
                    127: *>                is used to solve a system of equations.
                    128: *> \endverbatim
                    129: *
                    130: *  Authors:
                    131: *  ========
                    132: *
1.15      bertrand  133: *> \author Univ. of Tennessee
                    134: *> \author Univ. of California Berkeley
                    135: *> \author Univ. of Colorado Denver
                    136: *> \author NAG Ltd.
1.9       bertrand  137: *
                    138: *> \ingroup complex16SYcomputational
                    139: *
                    140: *> \par Further Details:
                    141: *  =====================
                    142: *>
                    143: *> \verbatim
                    144: *>
                    145: *>  If UPLO = 'U', then A = U*D*U**T, where
                    146: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
                    147: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
                    148: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    149: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    150: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
                    151: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    152: *>
                    153: *>             (   I    v    0   )   k-s
                    154: *>     U(k) =  (   0    I    0   )   s
                    155: *>             (   0    0    I   )   n-k
                    156: *>                k-s   s   n-k
                    157: *>
                    158: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
                    159: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
                    160: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
                    161: *>
                    162: *>  If UPLO = 'L', then A = L*D*L**T, where
                    163: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
                    164: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
                    165: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    166: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    167: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
                    168: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    169: *>
                    170: *>             (   I    0     0   )  k-1
                    171: *>     L(k) =  (   0    I     0   )  s
                    172: *>             (   0    v     I   )  n-k-s+1
                    173: *>                k-1   s  n-k-s+1
                    174: *>
                    175: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
                    176: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
                    177: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
                    178: *> \endverbatim
                    179: *>
                    180: *  =====================================================================
1.1       bertrand  181:       SUBROUTINE ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                    182: *
1.19    ! bertrand  183: *  -- LAPACK computational routine --
1.1       bertrand  184: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    185: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    186: *
                    187: *     .. Scalar Arguments ..
                    188:       CHARACTER          UPLO
                    189:       INTEGER            INFO, LDA, LWORK, N
                    190: *     ..
                    191: *     .. Array Arguments ..
                    192:       INTEGER            IPIV( * )
                    193:       COMPLEX*16         A( LDA, * ), WORK( * )
                    194: *     ..
                    195: *
                    196: *  =====================================================================
                    197: *
                    198: *     .. Local Scalars ..
                    199:       LOGICAL            LQUERY, UPPER
                    200:       INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
                    201: *     ..
                    202: *     .. External Functions ..
                    203:       LOGICAL            LSAME
                    204:       INTEGER            ILAENV
                    205:       EXTERNAL           LSAME, ILAENV
                    206: *     ..
                    207: *     .. External Subroutines ..
                    208:       EXTERNAL           XERBLA, ZLASYF, ZSYTF2
                    209: *     ..
                    210: *     .. Intrinsic Functions ..
                    211:       INTRINSIC          MAX
                    212: *     ..
                    213: *     .. Executable Statements ..
                    214: *
                    215: *     Test the input parameters.
                    216: *
                    217:       INFO = 0
                    218:       UPPER = LSAME( UPLO, 'U' )
                    219:       LQUERY = ( LWORK.EQ.-1 )
                    220:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    221:          INFO = -1
                    222:       ELSE IF( N.LT.0 ) THEN
                    223:          INFO = -2
                    224:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    225:          INFO = -4
                    226:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    227:          INFO = -7
                    228:       END IF
                    229: *
                    230:       IF( INFO.EQ.0 ) THEN
                    231: *
                    232: *        Determine the block size
                    233: *
                    234:          NB = ILAENV( 1, 'ZSYTRF', UPLO, N, -1, -1, -1 )
                    235:          LWKOPT = N*NB
                    236:          WORK( 1 ) = LWKOPT
                    237:       END IF
                    238: *
                    239:       IF( INFO.NE.0 ) THEN
                    240:          CALL XERBLA( 'ZSYTRF', -INFO )
                    241:          RETURN
                    242:       ELSE IF( LQUERY ) THEN
                    243:          RETURN
                    244:       END IF
                    245: *
                    246:       NBMIN = 2
                    247:       LDWORK = N
                    248:       IF( NB.GT.1 .AND. NB.LT.N ) THEN
                    249:          IWS = LDWORK*NB
                    250:          IF( LWORK.LT.IWS ) THEN
                    251:             NB = MAX( LWORK / LDWORK, 1 )
                    252:             NBMIN = MAX( 2, ILAENV( 2, 'ZSYTRF', UPLO, N, -1, -1, -1 ) )
                    253:          END IF
                    254:       ELSE
                    255:          IWS = 1
                    256:       END IF
                    257:       IF( NB.LT.NBMIN )
                    258:      $   NB = N
                    259: *
                    260:       IF( UPPER ) THEN
                    261: *
1.8       bertrand  262: *        Factorize A as U*D*U**T using the upper triangle of A
1.1       bertrand  263: *
                    264: *        K is the main loop index, decreasing from N to 1 in steps of
                    265: *        KB, where KB is the number of columns factorized by ZLASYF;
                    266: *        KB is either NB or NB-1, or K for the last block
                    267: *
                    268:          K = N
                    269:    10    CONTINUE
                    270: *
                    271: *        If K < 1, exit from loop
                    272: *
                    273:          IF( K.LT.1 )
                    274:      $      GO TO 40
                    275: *
                    276:          IF( K.GT.NB ) THEN
                    277: *
                    278: *           Factorize columns k-kb+1:k of A and use blocked code to
                    279: *           update columns 1:k-kb
                    280: *
                    281:             CALL ZLASYF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, N, IINFO )
                    282:          ELSE
                    283: *
                    284: *           Use unblocked code to factorize columns 1:k of A
                    285: *
                    286:             CALL ZSYTF2( UPLO, K, A, LDA, IPIV, IINFO )
                    287:             KB = K
                    288:          END IF
                    289: *
                    290: *        Set INFO on the first occurrence of a zero pivot
                    291: *
                    292:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    293:      $      INFO = IINFO
                    294: *
                    295: *        Decrease K and return to the start of the main loop
                    296: *
                    297:          K = K - KB
                    298:          GO TO 10
                    299: *
                    300:       ELSE
                    301: *
1.8       bertrand  302: *        Factorize A as L*D*L**T using the lower triangle of A
1.1       bertrand  303: *
                    304: *        K is the main loop index, increasing from 1 to N in steps of
                    305: *        KB, where KB is the number of columns factorized by ZLASYF;
                    306: *        KB is either NB or NB-1, or N-K+1 for the last block
                    307: *
                    308:          K = 1
                    309:    20    CONTINUE
                    310: *
                    311: *        If K > N, exit from loop
                    312: *
                    313:          IF( K.GT.N )
                    314:      $      GO TO 40
                    315: *
                    316:          IF( K.LE.N-NB ) THEN
                    317: *
                    318: *           Factorize columns k:k+kb-1 of A and use blocked code to
                    319: *           update columns k+kb:n
                    320: *
                    321:             CALL ZLASYF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
                    322:      $                   WORK, N, IINFO )
                    323:          ELSE
                    324: *
                    325: *           Use unblocked code to factorize columns k:n of A
                    326: *
                    327:             CALL ZSYTF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
                    328:             KB = N - K + 1
                    329:          END IF
                    330: *
                    331: *        Set INFO on the first occurrence of a zero pivot
                    332: *
                    333:          IF( INFO.EQ.0 .AND. IINFO.GT.0 )
                    334:      $      INFO = IINFO + K - 1
                    335: *
                    336: *        Adjust IPIV
                    337: *
                    338:          DO 30 J = K, K + KB - 1
                    339:             IF( IPIV( J ).GT.0 ) THEN
                    340:                IPIV( J ) = IPIV( J ) + K - 1
                    341:             ELSE
                    342:                IPIV( J ) = IPIV( J ) - K + 1
                    343:             END IF
                    344:    30    CONTINUE
                    345: *
                    346: *        Increase K and return to the start of the main loop
                    347: *
                    348:          K = K + KB
                    349:          GO TO 20
                    350: *
                    351:       END IF
                    352: *
                    353:    40 CONTINUE
                    354:       WORK( 1 ) = LWKOPT
                    355:       RETURN
                    356: *
                    357: *     End of ZSYTRF
                    358: *
                    359:       END

CVSweb interface <joel.bertrand@systella.fr>