File:  [local] / rpl / lapack / lapack / zsytf2_rook.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:38 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSYTF2_ROOK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYTF2_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytf2_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytf2_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytf2_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYTF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSYTF2_ROOK computes the factorization of a complex symmetric matrix A
   39: *> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**T  or  A = L*D*L**T
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, U**T is the transpose of U, and D is symmetric and
   45: *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the upper or lower triangular part of the
   57: *>          symmetric matrix A is stored:
   58: *>          = 'U':  Upper triangular
   59: *>          = 'L':  Lower triangular
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] A
   69: *> \verbatim
   70: *>          A is COMPLEX*16 array, dimension (LDA,N)
   71: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   72: *>          n-by-n upper triangular part of A contains the upper
   73: *>          triangular part of the matrix A, and the strictly lower
   74: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   75: *>          leading n-by-n lower triangular part of A contains the lower
   76: *>          triangular part of the matrix A, and the strictly upper
   77: *>          triangular part of A is not referenced.
   78: *>
   79: *>          On exit, the block diagonal matrix D and the multipliers used
   80: *>          to obtain the factor U or L (see below for further details).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] IPIV
   90: *> \verbatim
   91: *>          IPIV is INTEGER array, dimension (N)
   92: *>          Details of the interchanges and the block structure of D.
   93: *>
   94: *>          If UPLO = 'U':
   95: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
   96: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
   97: *>
   98: *>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
   99: *>             columns k and -IPIV(k) were interchanged and rows and
  100: *>             columns k-1 and -IPIV(k-1) were inerchaged,
  101: *>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  102: *>
  103: *>          If UPLO = 'L':
  104: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
  105: *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
  106: *>
  107: *>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  108: *>             columns k and -IPIV(k) were interchanged and rows and
  109: *>             columns k+1 and -IPIV(k+1) were inerchaged,
  110: *>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] INFO
  114: *> \verbatim
  115: *>          INFO is INTEGER
  116: *>          = 0: successful exit
  117: *>          < 0: if INFO = -k, the k-th argument had an illegal value
  118: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  119: *>               has been completed, but the block diagonal matrix D is
  120: *>               exactly singular, and division by zero will occur if it
  121: *>               is used to solve a system of equations.
  122: *> \endverbatim
  123: *
  124: *  Authors:
  125: *  ========
  126: *
  127: *> \author Univ. of Tennessee
  128: *> \author Univ. of California Berkeley
  129: *> \author Univ. of Colorado Denver
  130: *> \author NAG Ltd.
  131: *
  132: *> \ingroup complex16SYcomputational
  133: *
  134: *> \par Further Details:
  135: *  =====================
  136: *>
  137: *> \verbatim
  138: *>
  139: *>  If UPLO = 'U', then A = U*D*U**T, where
  140: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  141: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  142: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  143: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  144: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  145: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  146: *>
  147: *>             (   I    v    0   )   k-s
  148: *>     U(k) =  (   0    I    0   )   s
  149: *>             (   0    0    I   )   n-k
  150: *>                k-s   s   n-k
  151: *>
  152: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  153: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  154: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  155: *>
  156: *>  If UPLO = 'L', then A = L*D*L**T, where
  157: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  158: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  159: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  160: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  161: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  162: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  163: *>
  164: *>             (   I    0     0   )  k-1
  165: *>     L(k) =  (   0    I     0   )  s
  166: *>             (   0    v     I   )  n-k-s+1
  167: *>                k-1   s  n-k-s+1
  168: *>
  169: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  170: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  171: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  172: *> \endverbatim
  173: *
  174: *> \par Contributors:
  175: *  ==================
  176: *>
  177: *> \verbatim
  178: *>
  179: *>  November 2013,     Igor Kozachenko,
  180: *>                  Computer Science Division,
  181: *>                  University of California, Berkeley
  182: *>
  183: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  184: *>                  School of Mathematics,
  185: *>                  University of Manchester
  186: *>
  187: *>  01-01-96 - Based on modifications by
  188: *>    J. Lewis, Boeing Computer Services Company
  189: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville abd , USA
  190: *> \endverbatim
  191: *
  192: *  =====================================================================
  193:       SUBROUTINE ZSYTF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
  194: *
  195: *  -- LAPACK computational routine --
  196: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  197: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  198: *
  199: *     .. Scalar Arguments ..
  200:       CHARACTER          UPLO
  201:       INTEGER            INFO, LDA, N
  202: *     ..
  203: *     .. Array Arguments ..
  204:       INTEGER            IPIV( * )
  205:       COMPLEX*16         A( LDA, * )
  206: *     ..
  207: *
  208: *  =====================================================================
  209: *
  210: *     .. Parameters ..
  211:       DOUBLE PRECISION   ZERO, ONE
  212:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  213:       DOUBLE PRECISION   EIGHT, SEVTEN
  214:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  215:       COMPLEX*16         CONE
  216:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  217: *     ..
  218: *     .. Local Scalars ..
  219:       LOGICAL            UPPER, DONE
  220:       INTEGER            I, IMAX, J, JMAX, ITEMP, K, KK, KP, KSTEP,
  221:      $                   P, II
  222:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX, DTEMP, SFMIN
  223:       COMPLEX*16         D11, D12, D21, D22, T, WK, WKM1, WKP1, Z
  224: *     ..
  225: *     .. External Functions ..
  226:       LOGICAL            LSAME
  227:       INTEGER            IZAMAX
  228:       DOUBLE PRECISION   DLAMCH
  229:       EXTERNAL           LSAME, IZAMAX, DLAMCH
  230: *     ..
  231: *     .. External Subroutines ..
  232:       EXTERNAL           ZSCAL, ZSWAP, ZSYR, XERBLA
  233: *     ..
  234: *     .. Intrinsic Functions ..
  235:       INTRINSIC          ABS, MAX, SQRT, DIMAG, DBLE
  236: *     ..
  237: *     .. Statement Functions ..
  238:       DOUBLE PRECISION   CABS1
  239: *     ..
  240: *     .. Statement Function definitions ..
  241:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  242: *     ..
  243: *     .. Executable Statements ..
  244: *
  245: *     Test the input parameters.
  246: *
  247:       INFO = 0
  248:       UPPER = LSAME( UPLO, 'U' )
  249:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  250:          INFO = -1
  251:       ELSE IF( N.LT.0 ) THEN
  252:          INFO = -2
  253:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  254:          INFO = -4
  255:       END IF
  256:       IF( INFO.NE.0 ) THEN
  257:          CALL XERBLA( 'ZSYTF2_ROOK', -INFO )
  258:          RETURN
  259:       END IF
  260: *
  261: *     Initialize ALPHA for use in choosing pivot block size.
  262: *
  263:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  264: *
  265: *     Compute machine safe minimum
  266: *
  267:       SFMIN = DLAMCH( 'S' )
  268: *
  269:       IF( UPPER ) THEN
  270: *
  271: *        Factorize A as U*D*U**T using the upper triangle of A
  272: *
  273: *        K is the main loop index, decreasing from N to 1 in steps of
  274: *        1 or 2
  275: *
  276:          K = N
  277:    10    CONTINUE
  278: *
  279: *        If K < 1, exit from loop
  280: *
  281:          IF( K.LT.1 )
  282:      $      GO TO 70
  283:          KSTEP = 1
  284:          P = K
  285: *
  286: *        Determine rows and columns to be interchanged and whether
  287: *        a 1-by-1 or 2-by-2 pivot block will be used
  288: *
  289:          ABSAKK = CABS1( A( K, K ) )
  290: *
  291: *        IMAX is the row-index of the largest off-diagonal element in
  292: *        column K, and COLMAX is its absolute value.
  293: *        Determine both COLMAX and IMAX.
  294: *
  295:          IF( K.GT.1 ) THEN
  296:             IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  297:             COLMAX = CABS1( A( IMAX, K ) )
  298:          ELSE
  299:             COLMAX = ZERO
  300:          END IF
  301: *
  302:          IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) ) THEN
  303: *
  304: *           Column K is zero or underflow: set INFO and continue
  305: *
  306:             IF( INFO.EQ.0 )
  307:      $         INFO = K
  308:             KP = K
  309:          ELSE
  310: *
  311: *           Test for interchange
  312: *
  313: *           Equivalent to testing for (used to handle NaN and Inf)
  314: *           ABSAKK.GE.ALPHA*COLMAX
  315: *
  316:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  317: *
  318: *              no interchange,
  319: *              use 1-by-1 pivot block
  320: *
  321:                KP = K
  322:             ELSE
  323: *
  324:                DONE = .FALSE.
  325: *
  326: *              Loop until pivot found
  327: *
  328:    12          CONTINUE
  329: *
  330: *                 Begin pivot search loop body
  331: *
  332: *                 JMAX is the column-index of the largest off-diagonal
  333: *                 element in row IMAX, and ROWMAX is its absolute value.
  334: *                 Determine both ROWMAX and JMAX.
  335: *
  336:                   IF( IMAX.NE.K ) THEN
  337:                      JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ),
  338:      $                                    LDA )
  339:                      ROWMAX = CABS1( A( IMAX, JMAX ) )
  340:                   ELSE
  341:                      ROWMAX = ZERO
  342:                   END IF
  343: *
  344:                   IF( IMAX.GT.1 ) THEN
  345:                      ITEMP = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  346:                      DTEMP = CABS1( A( ITEMP, IMAX ) )
  347:                      IF( DTEMP.GT.ROWMAX ) THEN
  348:                         ROWMAX = DTEMP
  349:                         JMAX = ITEMP
  350:                      END IF
  351:                   END IF
  352: *
  353: *                 Equivalent to testing for (used to handle NaN and Inf)
  354: *                 CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
  355: *
  356:                   IF( .NOT.( CABS1(A( IMAX, IMAX )).LT.ALPHA*ROWMAX ) )
  357:      $            THEN
  358: *
  359: *                    interchange rows and columns K and IMAX,
  360: *                    use 1-by-1 pivot block
  361: *
  362:                      KP = IMAX
  363:                      DONE = .TRUE.
  364: *
  365: *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
  366: *                 used to handle NaN and Inf
  367: *
  368:                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
  369: *
  370: *                    interchange rows and columns K+1 and IMAX,
  371: *                    use 2-by-2 pivot block
  372: *
  373:                      KP = IMAX
  374:                      KSTEP = 2
  375:                      DONE = .TRUE.
  376:                   ELSE
  377: *
  378: *                    Pivot NOT found, set variables and repeat
  379: *
  380:                      P = IMAX
  381:                      COLMAX = ROWMAX
  382:                      IMAX = JMAX
  383:                   END IF
  384: *
  385: *                 End pivot search loop body
  386: *
  387:                IF( .NOT. DONE ) GOTO 12
  388: *
  389:             END IF
  390: *
  391: *           Swap TWO rows and TWO columns
  392: *
  393: *           First swap
  394: *
  395:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  396: *
  397: *              Interchange rows and column K and P in the leading
  398: *              submatrix A(1:k,1:k) if we have a 2-by-2 pivot
  399: *
  400:                IF( P.GT.1 )
  401:      $            CALL ZSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
  402:                IF( P.LT.(K-1) )
  403:      $            CALL ZSWAP( K-P-1, A( P+1, K ), 1, A( P, P+1 ),
  404:      $                     LDA )
  405:                T = A( K, K )
  406:                A( K, K ) = A( P, P )
  407:                A( P, P ) = T
  408:             END IF
  409: *
  410: *           Second swap
  411: *
  412:             KK = K - KSTEP + 1
  413:             IF( KP.NE.KK ) THEN
  414: *
  415: *              Interchange rows and columns KK and KP in the leading
  416: *              submatrix A(1:k,1:k)
  417: *
  418:                IF( KP.GT.1 )
  419:      $            CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  420:                IF( ( KK.GT.1 ) .AND. ( KP.LT.(KK-1) ) )
  421:      $            CALL ZSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  422:      $                     LDA )
  423:                T = A( KK, KK )
  424:                A( KK, KK ) = A( KP, KP )
  425:                A( KP, KP ) = T
  426:                IF( KSTEP.EQ.2 ) THEN
  427:                   T = A( K-1, K )
  428:                   A( K-1, K ) = A( KP, K )
  429:                   A( KP, K ) = T
  430:                END IF
  431:             END IF
  432: *
  433: *           Update the leading submatrix
  434: *
  435:             IF( KSTEP.EQ.1 ) THEN
  436: *
  437: *              1-by-1 pivot block D(k): column k now holds
  438: *
  439: *              W(k) = U(k)*D(k)
  440: *
  441: *              where U(k) is the k-th column of U
  442: *
  443:                IF( K.GT.1 ) THEN
  444: *
  445: *                 Perform a rank-1 update of A(1:k-1,1:k-1) and
  446: *                 store U(k) in column k
  447: *
  448:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  449: *
  450: *                    Perform a rank-1 update of A(1:k-1,1:k-1) as
  451: *                    A := A - U(k)*D(k)*U(k)**T
  452: *                       = A - W(k)*1/D(k)*W(k)**T
  453: *
  454:                      D11 = CONE / A( K, K )
  455:                      CALL ZSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  456: *
  457: *                    Store U(k) in column k
  458: *
  459:                      CALL ZSCAL( K-1, D11, A( 1, K ), 1 )
  460:                   ELSE
  461: *
  462: *                    Store L(k) in column K
  463: *
  464:                      D11 = A( K, K )
  465:                      DO 16 II = 1, K - 1
  466:                         A( II, K ) = A( II, K ) / D11
  467:    16                CONTINUE
  468: *
  469: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  470: *                    A := A - U(k)*D(k)*U(k)**T
  471: *                       = A - W(k)*(1/D(k))*W(k)**T
  472: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  473: *
  474:                      CALL ZSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
  475:                   END IF
  476:                END IF
  477: *
  478:             ELSE
  479: *
  480: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  481: *
  482: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  483: *
  484: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  485: *              of U
  486: *
  487: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  488: *
  489: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  490: *                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
  491: *
  492: *              and store L(k) and L(k+1) in columns k and k+1
  493: *
  494:                IF( K.GT.2 ) THEN
  495: *
  496:                   D12 = A( K-1, K )
  497:                   D22 = A( K-1, K-1 ) / D12
  498:                   D11 = A( K, K ) / D12
  499:                   T = CONE / ( D11*D22-CONE )
  500: *
  501:                   DO 30 J = K - 2, 1, -1
  502: *
  503:                      WKM1 = T*( D11*A( J, K-1 )-A( J, K ) )
  504:                      WK = T*( D22*A( J, K )-A( J, K-1 ) )
  505: *
  506:                      DO 20 I = J, 1, -1
  507:                         A( I, J ) = A( I, J ) - (A( I, K ) / D12 )*WK -
  508:      $                              ( A( I, K-1 ) / D12 )*WKM1
  509:    20                CONTINUE
  510: *
  511: *                    Store U(k) and U(k-1) in cols k and k-1 for row J
  512: *
  513:                      A( J, K ) = WK / D12
  514:                      A( J, K-1 ) = WKM1 / D12
  515: *
  516:    30             CONTINUE
  517: *
  518:                END IF
  519: *
  520:             END IF
  521:          END IF
  522: *
  523: *        Store details of the interchanges in IPIV
  524: *
  525:          IF( KSTEP.EQ.1 ) THEN
  526:             IPIV( K ) = KP
  527:          ELSE
  528:             IPIV( K ) = -P
  529:             IPIV( K-1 ) = -KP
  530:          END IF
  531: *
  532: *        Decrease K and return to the start of the main loop
  533: *
  534:          K = K - KSTEP
  535:          GO TO 10
  536: *
  537:       ELSE
  538: *
  539: *        Factorize A as L*D*L**T using the lower triangle of A
  540: *
  541: *        K is the main loop index, increasing from 1 to N in steps of
  542: *        1 or 2
  543: *
  544:          K = 1
  545:    40    CONTINUE
  546: *
  547: *        If K > N, exit from loop
  548: *
  549:          IF( K.GT.N )
  550:      $      GO TO 70
  551:          KSTEP = 1
  552:          P = K
  553: *
  554: *        Determine rows and columns to be interchanged and whether
  555: *        a 1-by-1 or 2-by-2 pivot block will be used
  556: *
  557:          ABSAKK = CABS1( A( K, K ) )
  558: *
  559: *        IMAX is the row-index of the largest off-diagonal element in
  560: *        column K, and COLMAX is its absolute value.
  561: *        Determine both COLMAX and IMAX.
  562: *
  563:          IF( K.LT.N ) THEN
  564:             IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  565:             COLMAX = CABS1( A( IMAX, K ) )
  566:          ELSE
  567:             COLMAX = ZERO
  568:          END IF
  569: *
  570:          IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
  571: *
  572: *           Column K is zero or underflow: set INFO and continue
  573: *
  574:             IF( INFO.EQ.0 )
  575:      $         INFO = K
  576:             KP = K
  577:          ELSE
  578: *
  579: *           Test for interchange
  580: *
  581: *           Equivalent to testing for (used to handle NaN and Inf)
  582: *           ABSAKK.GE.ALPHA*COLMAX
  583: *
  584:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  585: *
  586: *              no interchange, use 1-by-1 pivot block
  587: *
  588:                KP = K
  589:             ELSE
  590: *
  591:                DONE = .FALSE.
  592: *
  593: *              Loop until pivot found
  594: *
  595:    42          CONTINUE
  596: *
  597: *                 Begin pivot search loop body
  598: *
  599: *                 JMAX is the column-index of the largest off-diagonal
  600: *                 element in row IMAX, and ROWMAX is its absolute value.
  601: *                 Determine both ROWMAX and JMAX.
  602: *
  603:                   IF( IMAX.NE.K ) THEN
  604:                      JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  605:                      ROWMAX = CABS1( A( IMAX, JMAX ) )
  606:                   ELSE
  607:                      ROWMAX = ZERO
  608:                   END IF
  609: *
  610:                   IF( IMAX.LT.N ) THEN
  611:                      ITEMP = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ),
  612:      $                                     1 )
  613:                      DTEMP = CABS1( A( ITEMP, IMAX ) )
  614:                      IF( DTEMP.GT.ROWMAX ) THEN
  615:                         ROWMAX = DTEMP
  616:                         JMAX = ITEMP
  617:                      END IF
  618:                   END IF
  619: *
  620: *                 Equivalent to testing for (used to handle NaN and Inf)
  621: *                 CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
  622: *
  623:                   IF( .NOT.( CABS1(A( IMAX, IMAX )).LT.ALPHA*ROWMAX ) )
  624:      $            THEN
  625: *
  626: *                    interchange rows and columns K and IMAX,
  627: *                    use 1-by-1 pivot block
  628: *
  629:                      KP = IMAX
  630:                      DONE = .TRUE.
  631: *
  632: *                 Equivalent to testing for ROWMAX .EQ. COLMAX,
  633: *                 used to handle NaN and Inf
  634: *
  635:                   ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
  636: *
  637: *                    interchange rows and columns K+1 and IMAX,
  638: *                    use 2-by-2 pivot block
  639: *
  640:                      KP = IMAX
  641:                      KSTEP = 2
  642:                      DONE = .TRUE.
  643:                   ELSE
  644: *
  645: *                    Pivot NOT found, set variables and repeat
  646: *
  647:                      P = IMAX
  648:                      COLMAX = ROWMAX
  649:                      IMAX = JMAX
  650:                   END IF
  651: *
  652: *                 End pivot search loop body
  653: *
  654:                IF( .NOT. DONE ) GOTO 42
  655: *
  656:             END IF
  657: *
  658: *           Swap TWO rows and TWO columns
  659: *
  660: *           First swap
  661: *
  662:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  663: *
  664: *              Interchange rows and column K and P in the trailing
  665: *              submatrix A(k:n,k:n) if we have a 2-by-2 pivot
  666: *
  667:                IF( P.LT.N )
  668:      $            CALL ZSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
  669:                IF( P.GT.(K+1) )
  670:      $            CALL ZSWAP( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
  671:                T = A( K, K )
  672:                A( K, K ) = A( P, P )
  673:                A( P, P ) = T
  674:             END IF
  675: *
  676: *           Second swap
  677: *
  678:             KK = K + KSTEP - 1
  679:             IF( KP.NE.KK ) THEN
  680: *
  681: *              Interchange rows and columns KK and KP in the trailing
  682: *              submatrix A(k:n,k:n)
  683: *
  684:                IF( KP.LT.N )
  685:      $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  686:                IF( ( KK.LT.N ) .AND. ( KP.GT.(KK+1) ) )
  687:      $            CALL ZSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  688:      $                     LDA )
  689:                T = A( KK, KK )
  690:                A( KK, KK ) = A( KP, KP )
  691:                A( KP, KP ) = T
  692:                IF( KSTEP.EQ.2 ) THEN
  693:                   T = A( K+1, K )
  694:                   A( K+1, K ) = A( KP, K )
  695:                   A( KP, K ) = T
  696:                END IF
  697:             END IF
  698: *
  699: *           Update the trailing submatrix
  700: *
  701:             IF( KSTEP.EQ.1 ) THEN
  702: *
  703: *              1-by-1 pivot block D(k): column k now holds
  704: *
  705: *              W(k) = L(k)*D(k)
  706: *
  707: *              where L(k) is the k-th column of L
  708: *
  709:                IF( K.LT.N ) THEN
  710: *
  711: *              Perform a rank-1 update of A(k+1:n,k+1:n) and
  712: *              store L(k) in column k
  713: *
  714:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  715: *
  716: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  717: *                    A := A - L(k)*D(k)*L(k)**T
  718: *                       = A - W(k)*(1/D(k))*W(k)**T
  719: *
  720:                      D11 = CONE / A( K, K )
  721:                      CALL ZSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  722:      $                          A( K+1, K+1 ), LDA )
  723: *
  724: *                    Store L(k) in column k
  725: *
  726:                      CALL ZSCAL( N-K, D11, A( K+1, K ), 1 )
  727:                   ELSE
  728: *
  729: *                    Store L(k) in column k
  730: *
  731:                      D11 = A( K, K )
  732:                      DO 46 II = K + 1, N
  733:                         A( II, K ) = A( II, K ) / D11
  734:    46                CONTINUE
  735: *
  736: *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
  737: *                    A := A - L(k)*D(k)*L(k)**T
  738: *                       = A - W(k)*(1/D(k))*W(k)**T
  739: *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
  740: *
  741:                      CALL ZSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  742:      $                          A( K+1, K+1 ), LDA )
  743:                   END IF
  744:                END IF
  745: *
  746:             ELSE
  747: *
  748: *              2-by-2 pivot block D(k): columns k and k+1 now hold
  749: *
  750: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  751: *
  752: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  753: *              of L
  754: *
  755: *
  756: *              Perform a rank-2 update of A(k+2:n,k+2:n) as
  757: *
  758: *              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
  759: *                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
  760: *
  761: *              and store L(k) and L(k+1) in columns k and k+1
  762: *
  763:                IF( K.LT.N-1 ) THEN
  764: *
  765:                   D21 = A( K+1, K )
  766:                   D11 = A( K+1, K+1 ) / D21
  767:                   D22 = A( K, K ) / D21
  768:                   T = CONE / ( D11*D22-CONE )
  769: *
  770:                   DO 60 J = K + 2, N
  771: *
  772: *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
  773: *
  774:                      WK = T*( D11*A( J, K )-A( J, K+1 ) )
  775:                      WKP1 = T*( D22*A( J, K+1 )-A( J, K ) )
  776: *
  777: *                    Perform a rank-2 update of A(k+2:n,k+2:n)
  778: *
  779:                      DO 50 I = J, N
  780:                         A( I, J ) = A( I, J ) - ( A( I, K ) / D21 )*WK -
  781:      $                              ( A( I, K+1 ) / D21 )*WKP1
  782:    50                CONTINUE
  783: *
  784: *                    Store L(k) and L(k+1) in cols k and k+1 for row J
  785: *
  786:                      A( J, K ) = WK / D21
  787:                      A( J, K+1 ) = WKP1 / D21
  788: *
  789:    60             CONTINUE
  790: *
  791:                END IF
  792: *
  793:             END IF
  794:          END IF
  795: *
  796: *        Store details of the interchanges in IPIV
  797: *
  798:          IF( KSTEP.EQ.1 ) THEN
  799:             IPIV( K ) = KP
  800:          ELSE
  801:             IPIV( K ) = -P
  802:             IPIV( K+1 ) = -KP
  803:          END IF
  804: *
  805: *        Increase K and return to the start of the main loop
  806: *
  807:          K = K + KSTEP
  808:          GO TO 40
  809: *
  810:       END IF
  811: *
  812:    70 CONTINUE
  813: *
  814:       RETURN
  815: *
  816: *     End of ZSYTF2_ROOK
  817: *
  818:       END

CVSweb interface <joel.bertrand@systella.fr>