File:  [local] / rpl / lapack / lapack / zsytf2.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:21 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZSYTF2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZSYTF2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytf2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytf2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytf2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSYTF2 computes the factorization of a complex symmetric matrix A
   39: *> using the Bunch-Kaufman diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**T  or  A = L*D*L**T
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, U**T is the transpose of U, and D is symmetric and
   45: *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the upper or lower triangular part of the
   57: *>          symmetric matrix A is stored:
   58: *>          = 'U':  Upper triangular
   59: *>          = 'L':  Lower triangular
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] A
   69: *> \verbatim
   70: *>          A is COMPLEX*16 array, dimension (LDA,N)
   71: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   72: *>          n-by-n upper triangular part of A contains the upper
   73: *>          triangular part of the matrix A, and the strictly lower
   74: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   75: *>          leading n-by-n lower triangular part of A contains the lower
   76: *>          triangular part of the matrix A, and the strictly upper
   77: *>          triangular part of A is not referenced.
   78: *>
   79: *>          On exit, the block diagonal matrix D and the multipliers used
   80: *>          to obtain the factor U or L (see below for further details).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] IPIV
   90: *> \verbatim
   91: *>          IPIV is INTEGER array, dimension (N)
   92: *>          Details of the interchanges and the block structure of D.
   93: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   94: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
   95: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   96: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   97: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   98: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   99: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  100: *> \endverbatim
  101: *>
  102: *> \param[out] INFO
  103: *> \verbatim
  104: *>          INFO is INTEGER
  105: *>          = 0: successful exit
  106: *>          < 0: if INFO = -k, the k-th argument had an illegal value
  107: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  108: *>               has been completed, but the block diagonal matrix D is
  109: *>               exactly singular, and division by zero will occur if it
  110: *>               is used to solve a system of equations.
  111: *> \endverbatim
  112: *
  113: *  Authors:
  114: *  ========
  115: *
  116: *> \author Univ. of Tennessee 
  117: *> \author Univ. of California Berkeley 
  118: *> \author Univ. of Colorado Denver 
  119: *> \author NAG Ltd. 
  120: *
  121: *> \date November 2011
  122: *
  123: *> \ingroup complex16SYcomputational
  124: *
  125: *> \par Further Details:
  126: *  =====================
  127: *>
  128: *> \verbatim
  129: *>
  130: *>  If UPLO = 'U', then A = U*D*U**T, where
  131: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  132: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  133: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  134: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  135: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  136: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  137: *>
  138: *>             (   I    v    0   )   k-s
  139: *>     U(k) =  (   0    I    0   )   s
  140: *>             (   0    0    I   )   n-k
  141: *>                k-s   s   n-k
  142: *>
  143: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  144: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  145: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  146: *>
  147: *>  If UPLO = 'L', then A = L*D*L**T, where
  148: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  149: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  150: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  151: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  152: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  153: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  154: *>
  155: *>             (   I    0     0   )  k-1
  156: *>     L(k) =  (   0    I     0   )  s
  157: *>             (   0    v     I   )  n-k-s+1
  158: *>                k-1   s  n-k-s+1
  159: *>
  160: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  161: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  162: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  163: *> \endverbatim
  164: *
  165: *> \par Contributors:
  166: *  ==================
  167: *>
  168: *> \verbatim
  169: *>
  170: *>  09-29-06 - patch from
  171: *>    Bobby Cheng, MathWorks
  172: *>
  173: *>    Replace l.209 and l.377
  174: *>         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  175: *>    by
  176: *>         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  177: *>
  178: *>  1-96 - Based on modifications by J. Lewis, Boeing Computer Services
  179: *>         Company
  180: *> \endverbatim
  181: *
  182: *  =====================================================================
  183:       SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
  184: *
  185: *  -- LAPACK computational routine (version 3.4.0) --
  186: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  187: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  188: *     November 2011
  189: *
  190: *     .. Scalar Arguments ..
  191:       CHARACTER          UPLO
  192:       INTEGER            INFO, LDA, N
  193: *     ..
  194: *     .. Array Arguments ..
  195:       INTEGER            IPIV( * )
  196:       COMPLEX*16         A( LDA, * )
  197: *     ..
  198: *
  199: *  =====================================================================
  200: *
  201: *     .. Parameters ..
  202:       DOUBLE PRECISION   ZERO, ONE
  203:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  204:       DOUBLE PRECISION   EIGHT, SEVTEN
  205:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  206:       COMPLEX*16         CONE
  207:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  208: *     ..
  209: *     .. Local Scalars ..
  210:       LOGICAL            UPPER
  211:       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
  212:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX
  213:       COMPLEX*16         D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, Z
  214: *     ..
  215: *     .. External Functions ..
  216:       LOGICAL            DISNAN, LSAME
  217:       INTEGER            IZAMAX
  218:       EXTERNAL           DISNAN, LSAME, IZAMAX
  219: *     ..
  220: *     .. External Subroutines ..
  221:       EXTERNAL           XERBLA, ZSCAL, ZSWAP, ZSYR
  222: *     ..
  223: *     .. Intrinsic Functions ..
  224:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
  225: *     ..
  226: *     .. Statement Functions ..
  227:       DOUBLE PRECISION   CABS1
  228: *     ..
  229: *     .. Statement Function definitions ..
  230:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  231: *     ..
  232: *     .. Executable Statements ..
  233: *
  234: *     Test the input parameters.
  235: *
  236:       INFO = 0
  237:       UPPER = LSAME( UPLO, 'U' )
  238:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  239:          INFO = -1
  240:       ELSE IF( N.LT.0 ) THEN
  241:          INFO = -2
  242:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  243:          INFO = -4
  244:       END IF
  245:       IF( INFO.NE.0 ) THEN
  246:          CALL XERBLA( 'ZSYTF2', -INFO )
  247:          RETURN
  248:       END IF
  249: *
  250: *     Initialize ALPHA for use in choosing pivot block size.
  251: *
  252:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  253: *
  254:       IF( UPPER ) THEN
  255: *
  256: *        Factorize A as U*D*U**T using the upper triangle of A
  257: *
  258: *        K is the main loop index, decreasing from N to 1 in steps of
  259: *        1 or 2
  260: *
  261:          K = N
  262:    10    CONTINUE
  263: *
  264: *        If K < 1, exit from loop
  265: *
  266:          IF( K.LT.1 )
  267:      $      GO TO 70
  268:          KSTEP = 1
  269: *
  270: *        Determine rows and columns to be interchanged and whether
  271: *        a 1-by-1 or 2-by-2 pivot block will be used
  272: *
  273:          ABSAKK = CABS1( A( K, K ) )
  274: *
  275: *        IMAX is the row-index of the largest off-diagonal element in
  276: *        column K, and COLMAX is its absolute value
  277: *
  278:          IF( K.GT.1 ) THEN
  279:             IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  280:             COLMAX = CABS1( A( IMAX, K ) )
  281:          ELSE
  282:             COLMAX = ZERO
  283:          END IF
  284: *
  285:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
  286: *
  287: *           Column K is zero or NaN: set INFO and continue
  288: *
  289:             IF( INFO.EQ.0 )
  290:      $         INFO = K
  291:             KP = K
  292:          ELSE
  293:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  294: *
  295: *              no interchange, use 1-by-1 pivot block
  296: *
  297:                KP = K
  298:             ELSE
  299: *
  300: *              JMAX is the column-index of the largest off-diagonal
  301: *              element in row IMAX, and ROWMAX is its absolute value
  302: *
  303:                JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  304:                ROWMAX = CABS1( A( IMAX, JMAX ) )
  305:                IF( IMAX.GT.1 ) THEN
  306:                   JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  307:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  308:                END IF
  309: *
  310:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  311: *
  312: *                 no interchange, use 1-by-1 pivot block
  313: *
  314:                   KP = K
  315:                ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  316: *
  317: *                 interchange rows and columns K and IMAX, use 1-by-1
  318: *                 pivot block
  319: *
  320:                   KP = IMAX
  321:                ELSE
  322: *
  323: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  324: *                 pivot block
  325: *
  326:                   KP = IMAX
  327:                   KSTEP = 2
  328:                END IF
  329:             END IF
  330: *
  331:             KK = K - KSTEP + 1
  332:             IF( KP.NE.KK ) THEN
  333: *
  334: *              Interchange rows and columns KK and KP in the leading
  335: *              submatrix A(1:k,1:k)
  336: *
  337:                CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  338:                CALL ZSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  339:      $                     LDA )
  340:                T = A( KK, KK )
  341:                A( KK, KK ) = A( KP, KP )
  342:                A( KP, KP ) = T
  343:                IF( KSTEP.EQ.2 ) THEN
  344:                   T = A( K-1, K )
  345:                   A( K-1, K ) = A( KP, K )
  346:                   A( KP, K ) = T
  347:                END IF
  348:             END IF
  349: *
  350: *           Update the leading submatrix
  351: *
  352:             IF( KSTEP.EQ.1 ) THEN
  353: *
  354: *              1-by-1 pivot block D(k): column k now holds
  355: *
  356: *              W(k) = U(k)*D(k)
  357: *
  358: *              where U(k) is the k-th column of U
  359: *
  360: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  361: *
  362: *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  363: *
  364:                R1 = CONE / A( K, K )
  365:                CALL ZSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  366: *
  367: *              Store U(k) in column k
  368: *
  369:                CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  370:             ELSE
  371: *
  372: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  373: *
  374: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  375: *
  376: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  377: *              of U
  378: *
  379: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  380: *
  381: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  382: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  383: *
  384:                IF( K.GT.2 ) THEN
  385: *
  386:                   D12 = A( K-1, K )
  387:                   D22 = A( K-1, K-1 ) / D12
  388:                   D11 = A( K, K ) / D12
  389:                   T = CONE / ( D11*D22-CONE )
  390:                   D12 = T / D12
  391: *
  392:                   DO 30 J = K - 2, 1, -1
  393:                      WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
  394:                      WK = D12*( D22*A( J, K )-A( J, K-1 ) )
  395:                      DO 20 I = J, 1, -1
  396:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
  397:      $                              A( I, K-1 )*WKM1
  398:    20                CONTINUE
  399:                      A( J, K ) = WK
  400:                      A( J, K-1 ) = WKM1
  401:    30             CONTINUE
  402: *
  403:                END IF
  404: *
  405:             END IF
  406:          END IF
  407: *
  408: *        Store details of the interchanges in IPIV
  409: *
  410:          IF( KSTEP.EQ.1 ) THEN
  411:             IPIV( K ) = KP
  412:          ELSE
  413:             IPIV( K ) = -KP
  414:             IPIV( K-1 ) = -KP
  415:          END IF
  416: *
  417: *        Decrease K and return to the start of the main loop
  418: *
  419:          K = K - KSTEP
  420:          GO TO 10
  421: *
  422:       ELSE
  423: *
  424: *        Factorize A as L*D*L**T using the lower triangle of A
  425: *
  426: *        K is the main loop index, increasing from 1 to N in steps of
  427: *        1 or 2
  428: *
  429:          K = 1
  430:    40    CONTINUE
  431: *
  432: *        If K > N, exit from loop
  433: *
  434:          IF( K.GT.N )
  435:      $      GO TO 70
  436:          KSTEP = 1
  437: *
  438: *        Determine rows and columns to be interchanged and whether
  439: *        a 1-by-1 or 2-by-2 pivot block will be used
  440: *
  441:          ABSAKK = CABS1( A( K, K ) )
  442: *
  443: *        IMAX is the row-index of the largest off-diagonal element in
  444: *        column K, and COLMAX is its absolute value
  445: *
  446:          IF( K.LT.N ) THEN
  447:             IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  448:             COLMAX = CABS1( A( IMAX, K ) )
  449:          ELSE
  450:             COLMAX = ZERO
  451:          END IF
  452: *
  453:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
  454: *
  455: *           Column K is zero or NaN: set INFO and continue
  456: *
  457:             IF( INFO.EQ.0 )
  458:      $         INFO = K
  459:             KP = K
  460:          ELSE
  461:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  462: *
  463: *              no interchange, use 1-by-1 pivot block
  464: *
  465:                KP = K
  466:             ELSE
  467: *
  468: *              JMAX is the column-index of the largest off-diagonal
  469: *              element in row IMAX, and ROWMAX is its absolute value
  470: *
  471:                JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  472:                ROWMAX = CABS1( A( IMAX, JMAX ) )
  473:                IF( IMAX.LT.N ) THEN
  474:                   JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  475:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  476:                END IF
  477: *
  478:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  479: *
  480: *                 no interchange, use 1-by-1 pivot block
  481: *
  482:                   KP = K
  483:                ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  484: *
  485: *                 interchange rows and columns K and IMAX, use 1-by-1
  486: *                 pivot block
  487: *
  488:                   KP = IMAX
  489:                ELSE
  490: *
  491: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  492: *                 pivot block
  493: *
  494:                   KP = IMAX
  495:                   KSTEP = 2
  496:                END IF
  497:             END IF
  498: *
  499:             KK = K + KSTEP - 1
  500:             IF( KP.NE.KK ) THEN
  501: *
  502: *              Interchange rows and columns KK and KP in the trailing
  503: *              submatrix A(k:n,k:n)
  504: *
  505:                IF( KP.LT.N )
  506:      $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  507:                CALL ZSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  508:      $                     LDA )
  509:                T = A( KK, KK )
  510:                A( KK, KK ) = A( KP, KP )
  511:                A( KP, KP ) = T
  512:                IF( KSTEP.EQ.2 ) THEN
  513:                   T = A( K+1, K )
  514:                   A( K+1, K ) = A( KP, K )
  515:                   A( KP, K ) = T
  516:                END IF
  517:             END IF
  518: *
  519: *           Update the trailing submatrix
  520: *
  521:             IF( KSTEP.EQ.1 ) THEN
  522: *
  523: *              1-by-1 pivot block D(k): column k now holds
  524: *
  525: *              W(k) = L(k)*D(k)
  526: *
  527: *              where L(k) is the k-th column of L
  528: *
  529:                IF( K.LT.N ) THEN
  530: *
  531: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  532: *
  533: *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  534: *
  535:                   R1 = CONE / A( K, K )
  536:                   CALL ZSYR( UPLO, N-K, -R1, A( K+1, K ), 1,
  537:      $                       A( K+1, K+1 ), LDA )
  538: *
  539: *                 Store L(k) in column K
  540: *
  541:                   CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  542:                END IF
  543:             ELSE
  544: *
  545: *              2-by-2 pivot block D(k)
  546: *
  547:                IF( K.LT.N-1 ) THEN
  548: *
  549: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  550: *
  551: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
  552: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
  553: *
  554: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  555: *                 columns of L
  556: *
  557:                   D21 = A( K+1, K )
  558:                   D11 = A( K+1, K+1 ) / D21
  559:                   D22 = A( K, K ) / D21
  560:                   T = CONE / ( D11*D22-CONE )
  561:                   D21 = T / D21
  562: *
  563:                   DO 60 J = K + 2, N
  564:                      WK = D21*( D11*A( J, K )-A( J, K+1 ) )
  565:                      WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
  566:                      DO 50 I = J, N
  567:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
  568:      $                              A( I, K+1 )*WKP1
  569:    50                CONTINUE
  570:                      A( J, K ) = WK
  571:                      A( J, K+1 ) = WKP1
  572:    60             CONTINUE
  573:                END IF
  574:             END IF
  575:          END IF
  576: *
  577: *        Store details of the interchanges in IPIV
  578: *
  579:          IF( KSTEP.EQ.1 ) THEN
  580:             IPIV( K ) = KP
  581:          ELSE
  582:             IPIV( K ) = -KP
  583:             IPIV( K+1 ) = -KP
  584:          END IF
  585: *
  586: *        Increase K and return to the start of the main loop
  587: *
  588:          K = K + KSTEP
  589:          GO TO 40
  590: *
  591:       END IF
  592: *
  593:    70 CONTINUE
  594:       RETURN
  595: *
  596: *     End of ZSYTF2
  597: *
  598:       END

CVSweb interface <joel.bertrand@systella.fr>