File:  [local] / rpl / lapack / lapack / zsytf2.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:50 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, LDA, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       COMPLEX*16         A( LDA, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZSYTF2 computes the factorization of a complex symmetric matrix A
   21: *  using the Bunch-Kaufman diagonal pivoting method:
   22: *
   23: *     A = U*D*U'  or  A = L*D*L'
   24: *
   25: *  where U (or L) is a product of permutation and unit upper (lower)
   26: *  triangular matrices, U' is the transpose of U, and D is symmetric and
   27: *  block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   28: *
   29: *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
   30: *
   31: *  Arguments
   32: *  =========
   33: *
   34: *  UPLO    (input) CHARACTER*1
   35: *          Specifies whether the upper or lower triangular part of the
   36: *          symmetric matrix A is stored:
   37: *          = 'U':  Upper triangular
   38: *          = 'L':  Lower triangular
   39: *
   40: *  N       (input) INTEGER
   41: *          The order of the matrix A.  N >= 0.
   42: *
   43: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   44: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   45: *          n-by-n upper triangular part of A contains the upper
   46: *          triangular part of the matrix A, and the strictly lower
   47: *          triangular part of A is not referenced.  If UPLO = 'L', the
   48: *          leading n-by-n lower triangular part of A contains the lower
   49: *          triangular part of the matrix A, and the strictly upper
   50: *          triangular part of A is not referenced.
   51: *
   52: *          On exit, the block diagonal matrix D and the multipliers used
   53: *          to obtain the factor U or L (see below for further details).
   54: *
   55: *  LDA     (input) INTEGER
   56: *          The leading dimension of the array A.  LDA >= max(1,N).
   57: *
   58: *  IPIV    (output) INTEGER array, dimension (N)
   59: *          Details of the interchanges and the block structure of D.
   60: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   61: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
   62: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   63: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   64: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   65: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   66: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   67: *
   68: *  INFO    (output) INTEGER
   69: *          = 0: successful exit
   70: *          < 0: if INFO = -k, the k-th argument had an illegal value
   71: *          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
   72: *               has been completed, but the block diagonal matrix D is
   73: *               exactly singular, and division by zero will occur if it
   74: *               is used to solve a system of equations.
   75: *
   76: *  Further Details
   77: *  ===============
   78: *
   79: *  09-29-06 - patch from
   80: *    Bobby Cheng, MathWorks
   81: *
   82: *    Replace l.209 and l.377
   83: *         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
   84: *    by
   85: *         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
   86: *
   87: *  1-96 - Based on modifications by J. Lewis, Boeing Computer Services
   88: *         Company
   89: *
   90: *  If UPLO = 'U', then A = U*D*U', where
   91: *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
   92: *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
   93: *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
   94: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
   95: *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
   96: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
   97: *
   98: *             (   I    v    0   )   k-s
   99: *     U(k) =  (   0    I    0   )   s
  100: *             (   0    0    I   )   n-k
  101: *                k-s   s   n-k
  102: *
  103: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  104: *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  105: *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  106: *
  107: *  If UPLO = 'L', then A = L*D*L', where
  108: *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  109: *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  110: *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  111: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  112: *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  113: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  114: *
  115: *             (   I    0     0   )  k-1
  116: *     L(k) =  (   0    I     0   )  s
  117: *             (   0    v     I   )  n-k-s+1
  118: *                k-1   s  n-k-s+1
  119: *
  120: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  121: *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  122: *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  123: *
  124: *  =====================================================================
  125: *
  126: *     .. Parameters ..
  127:       DOUBLE PRECISION   ZERO, ONE
  128:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  129:       DOUBLE PRECISION   EIGHT, SEVTEN
  130:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  131:       COMPLEX*16         CONE
  132:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  133: *     ..
  134: *     .. Local Scalars ..
  135:       LOGICAL            UPPER
  136:       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
  137:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX
  138:       COMPLEX*16         D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, Z
  139: *     ..
  140: *     .. External Functions ..
  141:       LOGICAL            DISNAN, LSAME
  142:       INTEGER            IZAMAX
  143:       EXTERNAL           DISNAN, LSAME, IZAMAX
  144: *     ..
  145: *     .. External Subroutines ..
  146:       EXTERNAL           XERBLA, ZSCAL, ZSWAP, ZSYR
  147: *     ..
  148: *     .. Intrinsic Functions ..
  149:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
  150: *     ..
  151: *     .. Statement Functions ..
  152:       DOUBLE PRECISION   CABS1
  153: *     ..
  154: *     .. Statement Function definitions ..
  155:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  156: *     ..
  157: *     .. Executable Statements ..
  158: *
  159: *     Test the input parameters.
  160: *
  161:       INFO = 0
  162:       UPPER = LSAME( UPLO, 'U' )
  163:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  164:          INFO = -1
  165:       ELSE IF( N.LT.0 ) THEN
  166:          INFO = -2
  167:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  168:          INFO = -4
  169:       END IF
  170:       IF( INFO.NE.0 ) THEN
  171:          CALL XERBLA( 'ZSYTF2', -INFO )
  172:          RETURN
  173:       END IF
  174: *
  175: *     Initialize ALPHA for use in choosing pivot block size.
  176: *
  177:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  178: *
  179:       IF( UPPER ) THEN
  180: *
  181: *        Factorize A as U*D*U' using the upper triangle of A
  182: *
  183: *        K is the main loop index, decreasing from N to 1 in steps of
  184: *        1 or 2
  185: *
  186:          K = N
  187:    10    CONTINUE
  188: *
  189: *        If K < 1, exit from loop
  190: *
  191:          IF( K.LT.1 )
  192:      $      GO TO 70
  193:          KSTEP = 1
  194: *
  195: *        Determine rows and columns to be interchanged and whether
  196: *        a 1-by-1 or 2-by-2 pivot block will be used
  197: *
  198:          ABSAKK = CABS1( A( K, K ) )
  199: *
  200: *        IMAX is the row-index of the largest off-diagonal element in
  201: *        column K, and COLMAX is its absolute value
  202: *
  203:          IF( K.GT.1 ) THEN
  204:             IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  205:             COLMAX = CABS1( A( IMAX, K ) )
  206:          ELSE
  207:             COLMAX = ZERO
  208:          END IF
  209: *
  210:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
  211: *
  212: *           Column K is zero or contains a NaN: set INFO and continue
  213: *
  214:             IF( INFO.EQ.0 )
  215:      $         INFO = K
  216:             KP = K
  217:          ELSE
  218:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  219: *
  220: *              no interchange, use 1-by-1 pivot block
  221: *
  222:                KP = K
  223:             ELSE
  224: *
  225: *              JMAX is the column-index of the largest off-diagonal
  226: *              element in row IMAX, and ROWMAX is its absolute value
  227: *
  228:                JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  229:                ROWMAX = CABS1( A( IMAX, JMAX ) )
  230:                IF( IMAX.GT.1 ) THEN
  231:                   JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  232:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  233:                END IF
  234: *
  235:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  236: *
  237: *                 no interchange, use 1-by-1 pivot block
  238: *
  239:                   KP = K
  240:                ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  241: *
  242: *                 interchange rows and columns K and IMAX, use 1-by-1
  243: *                 pivot block
  244: *
  245:                   KP = IMAX
  246:                ELSE
  247: *
  248: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  249: *                 pivot block
  250: *
  251:                   KP = IMAX
  252:                   KSTEP = 2
  253:                END IF
  254:             END IF
  255: *
  256:             KK = K - KSTEP + 1
  257:             IF( KP.NE.KK ) THEN
  258: *
  259: *              Interchange rows and columns KK and KP in the leading
  260: *              submatrix A(1:k,1:k)
  261: *
  262:                CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  263:                CALL ZSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  264:      $                     LDA )
  265:                T = A( KK, KK )
  266:                A( KK, KK ) = A( KP, KP )
  267:                A( KP, KP ) = T
  268:                IF( KSTEP.EQ.2 ) THEN
  269:                   T = A( K-1, K )
  270:                   A( K-1, K ) = A( KP, K )
  271:                   A( KP, K ) = T
  272:                END IF
  273:             END IF
  274: *
  275: *           Update the leading submatrix
  276: *
  277:             IF( KSTEP.EQ.1 ) THEN
  278: *
  279: *              1-by-1 pivot block D(k): column k now holds
  280: *
  281: *              W(k) = U(k)*D(k)
  282: *
  283: *              where U(k) is the k-th column of U
  284: *
  285: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  286: *
  287: *              A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)'
  288: *
  289:                R1 = CONE / A( K, K )
  290:                CALL ZSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  291: *
  292: *              Store U(k) in column k
  293: *
  294:                CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  295:             ELSE
  296: *
  297: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  298: *
  299: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  300: *
  301: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  302: *              of U
  303: *
  304: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  305: *
  306: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )'
  307: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )'
  308: *
  309:                IF( K.GT.2 ) THEN
  310: *
  311:                   D12 = A( K-1, K )
  312:                   D22 = A( K-1, K-1 ) / D12
  313:                   D11 = A( K, K ) / D12
  314:                   T = CONE / ( D11*D22-CONE )
  315:                   D12 = T / D12
  316: *
  317:                   DO 30 J = K - 2, 1, -1
  318:                      WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
  319:                      WK = D12*( D22*A( J, K )-A( J, K-1 ) )
  320:                      DO 20 I = J, 1, -1
  321:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
  322:      $                              A( I, K-1 )*WKM1
  323:    20                CONTINUE
  324:                      A( J, K ) = WK
  325:                      A( J, K-1 ) = WKM1
  326:    30             CONTINUE
  327: *
  328:                END IF
  329: *
  330:             END IF
  331:          END IF
  332: *
  333: *        Store details of the interchanges in IPIV
  334: *
  335:          IF( KSTEP.EQ.1 ) THEN
  336:             IPIV( K ) = KP
  337:          ELSE
  338:             IPIV( K ) = -KP
  339:             IPIV( K-1 ) = -KP
  340:          END IF
  341: *
  342: *        Decrease K and return to the start of the main loop
  343: *
  344:          K = K - KSTEP
  345:          GO TO 10
  346: *
  347:       ELSE
  348: *
  349: *        Factorize A as L*D*L' using the lower triangle of A
  350: *
  351: *        K is the main loop index, increasing from 1 to N in steps of
  352: *        1 or 2
  353: *
  354:          K = 1
  355:    40    CONTINUE
  356: *
  357: *        If K > N, exit from loop
  358: *
  359:          IF( K.GT.N )
  360:      $      GO TO 70
  361:          KSTEP = 1
  362: *
  363: *        Determine rows and columns to be interchanged and whether
  364: *        a 1-by-1 or 2-by-2 pivot block will be used
  365: *
  366:          ABSAKK = CABS1( A( K, K ) )
  367: *
  368: *        IMAX is the row-index of the largest off-diagonal element in
  369: *        column K, and COLMAX is its absolute value
  370: *
  371:          IF( K.LT.N ) THEN
  372:             IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  373:             COLMAX = CABS1( A( IMAX, K ) )
  374:          ELSE
  375:             COLMAX = ZERO
  376:          END IF
  377: *
  378:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
  379: *
  380: *           Column K is zero or contains a NaN: set INFO and continue
  381: *
  382:             IF( INFO.EQ.0 )
  383:      $         INFO = K
  384:             KP = K
  385:          ELSE
  386:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  387: *
  388: *              no interchange, use 1-by-1 pivot block
  389: *
  390:                KP = K
  391:             ELSE
  392: *
  393: *              JMAX is the column-index of the largest off-diagonal
  394: *              element in row IMAX, and ROWMAX is its absolute value
  395: *
  396:                JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  397:                ROWMAX = CABS1( A( IMAX, JMAX ) )
  398:                IF( IMAX.LT.N ) THEN
  399:                   JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  400:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  401:                END IF
  402: *
  403:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  404: *
  405: *                 no interchange, use 1-by-1 pivot block
  406: *
  407:                   KP = K
  408:                ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  409: *
  410: *                 interchange rows and columns K and IMAX, use 1-by-1
  411: *                 pivot block
  412: *
  413:                   KP = IMAX
  414:                ELSE
  415: *
  416: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  417: *                 pivot block
  418: *
  419:                   KP = IMAX
  420:                   KSTEP = 2
  421:                END IF
  422:             END IF
  423: *
  424:             KK = K + KSTEP - 1
  425:             IF( KP.NE.KK ) THEN
  426: *
  427: *              Interchange rows and columns KK and KP in the trailing
  428: *              submatrix A(k:n,k:n)
  429: *
  430:                IF( KP.LT.N )
  431:      $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  432:                CALL ZSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  433:      $                     LDA )
  434:                T = A( KK, KK )
  435:                A( KK, KK ) = A( KP, KP )
  436:                A( KP, KP ) = T
  437:                IF( KSTEP.EQ.2 ) THEN
  438:                   T = A( K+1, K )
  439:                   A( K+1, K ) = A( KP, K )
  440:                   A( KP, K ) = T
  441:                END IF
  442:             END IF
  443: *
  444: *           Update the trailing submatrix
  445: *
  446:             IF( KSTEP.EQ.1 ) THEN
  447: *
  448: *              1-by-1 pivot block D(k): column k now holds
  449: *
  450: *              W(k) = L(k)*D(k)
  451: *
  452: *              where L(k) is the k-th column of L
  453: *
  454:                IF( K.LT.N ) THEN
  455: *
  456: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  457: *
  458: *                 A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)'
  459: *
  460:                   R1 = CONE / A( K, K )
  461:                   CALL ZSYR( UPLO, N-K, -R1, A( K+1, K ), 1,
  462:      $                       A( K+1, K+1 ), LDA )
  463: *
  464: *                 Store L(k) in column K
  465: *
  466:                   CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  467:                END IF
  468:             ELSE
  469: *
  470: *              2-by-2 pivot block D(k)
  471: *
  472:                IF( K.LT.N-1 ) THEN
  473: *
  474: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  475: *
  476: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )'
  477: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )'
  478: *
  479: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  480: *                 columns of L
  481: *
  482:                   D21 = A( K+1, K )
  483:                   D11 = A( K+1, K+1 ) / D21
  484:                   D22 = A( K, K ) / D21
  485:                   T = CONE / ( D11*D22-CONE )
  486:                   D21 = T / D21
  487: *
  488:                   DO 60 J = K + 2, N
  489:                      WK = D21*( D11*A( J, K )-A( J, K+1 ) )
  490:                      WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
  491:                      DO 50 I = J, N
  492:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
  493:      $                              A( I, K+1 )*WKP1
  494:    50                CONTINUE
  495:                      A( J, K ) = WK
  496:                      A( J, K+1 ) = WKP1
  497:    60             CONTINUE
  498:                END IF
  499:             END IF
  500:          END IF
  501: *
  502: *        Store details of the interchanges in IPIV
  503: *
  504:          IF( KSTEP.EQ.1 ) THEN
  505:             IPIV( K ) = KP
  506:          ELSE
  507:             IPIV( K ) = -KP
  508:             IPIV( K+1 ) = -KP
  509:          END IF
  510: *
  511: *        Increase K and return to the start of the main loop
  512: *
  513:          K = K + KSTEP
  514:          GO TO 40
  515: *
  516:       END IF
  517: *
  518:    70 CONTINUE
  519:       RETURN
  520: *
  521: *     End of ZSYTF2
  522: *
  523:       END

CVSweb interface <joel.bertrand@systella.fr>