File:  [local] / rpl / lapack / lapack / zsytf2.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:37 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYTF2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytf2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytf2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytf2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSYTF2 computes the factorization of a complex symmetric matrix A
   39: *> using the Bunch-Kaufman diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**T  or  A = L*D*L**T
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, U**T is the transpose of U, and D is symmetric and
   45: *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
   46: *>
   47: *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the upper or lower triangular part of the
   57: *>          symmetric matrix A is stored:
   58: *>          = 'U':  Upper triangular
   59: *>          = 'L':  Lower triangular
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] A
   69: *> \verbatim
   70: *>          A is COMPLEX*16 array, dimension (LDA,N)
   71: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   72: *>          n-by-n upper triangular part of A contains the upper
   73: *>          triangular part of the matrix A, and the strictly lower
   74: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   75: *>          leading n-by-n lower triangular part of A contains the lower
   76: *>          triangular part of the matrix A, and the strictly upper
   77: *>          triangular part of A is not referenced.
   78: *>
   79: *>          On exit, the block diagonal matrix D and the multipliers used
   80: *>          to obtain the factor U or L (see below for further details).
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] IPIV
   90: *> \verbatim
   91: *>          IPIV is INTEGER array, dimension (N)
   92: *>          Details of the interchanges and the block structure of D.
   93: *>
   94: *>          If UPLO = 'U':
   95: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   96: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
   97: *>
   98: *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
   99: *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  100: *>             is a 2-by-2 diagonal block.
  101: *>
  102: *>          If UPLO = 'L':
  103: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  104: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  105: *>
  106: *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  107: *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  108: *>             is a 2-by-2 diagonal block.
  109: *> \endverbatim
  110: *>
  111: *> \param[out] INFO
  112: *> \verbatim
  113: *>          INFO is INTEGER
  114: *>          = 0: successful exit
  115: *>          < 0: if INFO = -k, the k-th argument had an illegal value
  116: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  117: *>               has been completed, but the block diagonal matrix D is
  118: *>               exactly singular, and division by zero will occur if it
  119: *>               is used to solve a system of equations.
  120: *> \endverbatim
  121: *
  122: *  Authors:
  123: *  ========
  124: *
  125: *> \author Univ. of Tennessee
  126: *> \author Univ. of California Berkeley
  127: *> \author Univ. of Colorado Denver
  128: *> \author NAG Ltd.
  129: *
  130: *> \date December 2016
  131: *
  132: *> \ingroup complex16SYcomputational
  133: *
  134: *> \par Further Details:
  135: *  =====================
  136: *>
  137: *> \verbatim
  138: *>
  139: *>  If UPLO = 'U', then A = U*D*U**T, where
  140: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  141: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  142: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  143: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  144: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  145: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  146: *>
  147: *>             (   I    v    0   )   k-s
  148: *>     U(k) =  (   0    I    0   )   s
  149: *>             (   0    0    I   )   n-k
  150: *>                k-s   s   n-k
  151: *>
  152: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  153: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  154: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  155: *>
  156: *>  If UPLO = 'L', then A = L*D*L**T, where
  157: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  158: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  159: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  160: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  161: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  162: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  163: *>
  164: *>             (   I    0     0   )  k-1
  165: *>     L(k) =  (   0    I     0   )  s
  166: *>             (   0    v     I   )  n-k-s+1
  167: *>                k-1   s  n-k-s+1
  168: *>
  169: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  170: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  171: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  172: *> \endverbatim
  173: *
  174: *> \par Contributors:
  175: *  ==================
  176: *>
  177: *> \verbatim
  178: *>
  179: *>  09-29-06 - patch from
  180: *>    Bobby Cheng, MathWorks
  181: *>
  182: *>    Replace l.209 and l.377
  183: *>         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  184: *>    by
  185: *>         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  186: *>
  187: *>  1-96 - Based on modifications by J. Lewis, Boeing Computer Services
  188: *>         Company
  189: *> \endverbatim
  190: *
  191: *  =====================================================================
  192:       SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
  193: *
  194: *  -- LAPACK computational routine (version 3.7.0) --
  195: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  196: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  197: *     December 2016
  198: *
  199: *     .. Scalar Arguments ..
  200:       CHARACTER          UPLO
  201:       INTEGER            INFO, LDA, N
  202: *     ..
  203: *     .. Array Arguments ..
  204:       INTEGER            IPIV( * )
  205:       COMPLEX*16         A( LDA, * )
  206: *     ..
  207: *
  208: *  =====================================================================
  209: *
  210: *     .. Parameters ..
  211:       DOUBLE PRECISION   ZERO, ONE
  212:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  213:       DOUBLE PRECISION   EIGHT, SEVTEN
  214:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  215:       COMPLEX*16         CONE
  216:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  217: *     ..
  218: *     .. Local Scalars ..
  219:       LOGICAL            UPPER
  220:       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
  221:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX
  222:       COMPLEX*16         D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, Z
  223: *     ..
  224: *     .. External Functions ..
  225:       LOGICAL            DISNAN, LSAME
  226:       INTEGER            IZAMAX
  227:       EXTERNAL           DISNAN, LSAME, IZAMAX
  228: *     ..
  229: *     .. External Subroutines ..
  230:       EXTERNAL           XERBLA, ZSCAL, ZSWAP, ZSYR
  231: *     ..
  232: *     .. Intrinsic Functions ..
  233:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
  234: *     ..
  235: *     .. Statement Functions ..
  236:       DOUBLE PRECISION   CABS1
  237: *     ..
  238: *     .. Statement Function definitions ..
  239:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  240: *     ..
  241: *     .. Executable Statements ..
  242: *
  243: *     Test the input parameters.
  244: *
  245:       INFO = 0
  246:       UPPER = LSAME( UPLO, 'U' )
  247:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  248:          INFO = -1
  249:       ELSE IF( N.LT.0 ) THEN
  250:          INFO = -2
  251:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  252:          INFO = -4
  253:       END IF
  254:       IF( INFO.NE.0 ) THEN
  255:          CALL XERBLA( 'ZSYTF2', -INFO )
  256:          RETURN
  257:       END IF
  258: *
  259: *     Initialize ALPHA for use in choosing pivot block size.
  260: *
  261:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  262: *
  263:       IF( UPPER ) THEN
  264: *
  265: *        Factorize A as U*D*U**T using the upper triangle of A
  266: *
  267: *        K is the main loop index, decreasing from N to 1 in steps of
  268: *        1 or 2
  269: *
  270:          K = N
  271:    10    CONTINUE
  272: *
  273: *        If K < 1, exit from loop
  274: *
  275:          IF( K.LT.1 )
  276:      $      GO TO 70
  277:          KSTEP = 1
  278: *
  279: *        Determine rows and columns to be interchanged and whether
  280: *        a 1-by-1 or 2-by-2 pivot block will be used
  281: *
  282:          ABSAKK = CABS1( A( K, K ) )
  283: *
  284: *        IMAX is the row-index of the largest off-diagonal element in
  285: *        column K, and COLMAX is its absolute value.
  286: *        Determine both COLMAX and IMAX.
  287: *
  288:          IF( K.GT.1 ) THEN
  289:             IMAX = IZAMAX( K-1, A( 1, K ), 1 )
  290:             COLMAX = CABS1( A( IMAX, K ) )
  291:          ELSE
  292:             COLMAX = ZERO
  293:          END IF
  294: *
  295:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
  296: *
  297: *           Column K is zero or underflow, or contains a NaN:
  298: *           set INFO and continue
  299: *
  300:             IF( INFO.EQ.0 )
  301:      $         INFO = K
  302:             KP = K
  303:          ELSE
  304:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  305: *
  306: *              no interchange, use 1-by-1 pivot block
  307: *
  308:                KP = K
  309:             ELSE
  310: *
  311: *              JMAX is the column-index of the largest off-diagonal
  312: *              element in row IMAX, and ROWMAX is its absolute value
  313: *
  314:                JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  315:                ROWMAX = CABS1( A( IMAX, JMAX ) )
  316:                IF( IMAX.GT.1 ) THEN
  317:                   JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
  318:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  319:                END IF
  320: *
  321:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  322: *
  323: *                 no interchange, use 1-by-1 pivot block
  324: *
  325:                   KP = K
  326:                ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  327: *
  328: *                 interchange rows and columns K and IMAX, use 1-by-1
  329: *                 pivot block
  330: *
  331:                   KP = IMAX
  332:                ELSE
  333: *
  334: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  335: *                 pivot block
  336: *
  337:                   KP = IMAX
  338:                   KSTEP = 2
  339:                END IF
  340:             END IF
  341: *
  342:             KK = K - KSTEP + 1
  343:             IF( KP.NE.KK ) THEN
  344: *
  345: *              Interchange rows and columns KK and KP in the leading
  346: *              submatrix A(1:k,1:k)
  347: *
  348:                CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  349:                CALL ZSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  350:      $                     LDA )
  351:                T = A( KK, KK )
  352:                A( KK, KK ) = A( KP, KP )
  353:                A( KP, KP ) = T
  354:                IF( KSTEP.EQ.2 ) THEN
  355:                   T = A( K-1, K )
  356:                   A( K-1, K ) = A( KP, K )
  357:                   A( KP, K ) = T
  358:                END IF
  359:             END IF
  360: *
  361: *           Update the leading submatrix
  362: *
  363:             IF( KSTEP.EQ.1 ) THEN
  364: *
  365: *              1-by-1 pivot block D(k): column k now holds
  366: *
  367: *              W(k) = U(k)*D(k)
  368: *
  369: *              where U(k) is the k-th column of U
  370: *
  371: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  372: *
  373: *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  374: *
  375:                R1 = CONE / A( K, K )
  376:                CALL ZSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  377: *
  378: *              Store U(k) in column k
  379: *
  380:                CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  381:             ELSE
  382: *
  383: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  384: *
  385: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  386: *
  387: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  388: *              of U
  389: *
  390: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  391: *
  392: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  393: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  394: *
  395:                IF( K.GT.2 ) THEN
  396: *
  397:                   D12 = A( K-1, K )
  398:                   D22 = A( K-1, K-1 ) / D12
  399:                   D11 = A( K, K ) / D12
  400:                   T = CONE / ( D11*D22-CONE )
  401:                   D12 = T / D12
  402: *
  403:                   DO 30 J = K - 2, 1, -1
  404:                      WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
  405:                      WK = D12*( D22*A( J, K )-A( J, K-1 ) )
  406:                      DO 20 I = J, 1, -1
  407:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
  408:      $                              A( I, K-1 )*WKM1
  409:    20                CONTINUE
  410:                      A( J, K ) = WK
  411:                      A( J, K-1 ) = WKM1
  412:    30             CONTINUE
  413: *
  414:                END IF
  415: *
  416:             END IF
  417:          END IF
  418: *
  419: *        Store details of the interchanges in IPIV
  420: *
  421:          IF( KSTEP.EQ.1 ) THEN
  422:             IPIV( K ) = KP
  423:          ELSE
  424:             IPIV( K ) = -KP
  425:             IPIV( K-1 ) = -KP
  426:          END IF
  427: *
  428: *        Decrease K and return to the start of the main loop
  429: *
  430:          K = K - KSTEP
  431:          GO TO 10
  432: *
  433:       ELSE
  434: *
  435: *        Factorize A as L*D*L**T using the lower triangle of A
  436: *
  437: *        K is the main loop index, increasing from 1 to N in steps of
  438: *        1 or 2
  439: *
  440:          K = 1
  441:    40    CONTINUE
  442: *
  443: *        If K > N, exit from loop
  444: *
  445:          IF( K.GT.N )
  446:      $      GO TO 70
  447:          KSTEP = 1
  448: *
  449: *        Determine rows and columns to be interchanged and whether
  450: *        a 1-by-1 or 2-by-2 pivot block will be used
  451: *
  452:          ABSAKK = CABS1( A( K, K ) )
  453: *
  454: *        IMAX is the row-index of the largest off-diagonal element in
  455: *        column K, and COLMAX is its absolute value.
  456: *        Determine both COLMAX and IMAX.
  457: *
  458:          IF( K.LT.N ) THEN
  459:             IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
  460:             COLMAX = CABS1( A( IMAX, K ) )
  461:          ELSE
  462:             COLMAX = ZERO
  463:          END IF
  464: *
  465:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
  466: *
  467: *           Column K is zero or underflow, or contains a NaN:
  468: *           set INFO and continue
  469: *
  470:             IF( INFO.EQ.0 )
  471:      $         INFO = K
  472:             KP = K
  473:          ELSE
  474:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  475: *
  476: *              no interchange, use 1-by-1 pivot block
  477: *
  478:                KP = K
  479:             ELSE
  480: *
  481: *              JMAX is the column-index of the largest off-diagonal
  482: *              element in row IMAX, and ROWMAX is its absolute value
  483: *
  484:                JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
  485:                ROWMAX = CABS1( A( IMAX, JMAX ) )
  486:                IF( IMAX.LT.N ) THEN
  487:                   JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  488:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
  489:                END IF
  490: *
  491:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  492: *
  493: *                 no interchange, use 1-by-1 pivot block
  494: *
  495:                   KP = K
  496:                ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  497: *
  498: *                 interchange rows and columns K and IMAX, use 1-by-1
  499: *                 pivot block
  500: *
  501:                   KP = IMAX
  502:                ELSE
  503: *
  504: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  505: *                 pivot block
  506: *
  507:                   KP = IMAX
  508:                   KSTEP = 2
  509:                END IF
  510:             END IF
  511: *
  512:             KK = K + KSTEP - 1
  513:             IF( KP.NE.KK ) THEN
  514: *
  515: *              Interchange rows and columns KK and KP in the trailing
  516: *              submatrix A(k:n,k:n)
  517: *
  518:                IF( KP.LT.N )
  519:      $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  520:                CALL ZSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  521:      $                     LDA )
  522:                T = A( KK, KK )
  523:                A( KK, KK ) = A( KP, KP )
  524:                A( KP, KP ) = T
  525:                IF( KSTEP.EQ.2 ) THEN
  526:                   T = A( K+1, K )
  527:                   A( K+1, K ) = A( KP, K )
  528:                   A( KP, K ) = T
  529:                END IF
  530:             END IF
  531: *
  532: *           Update the trailing submatrix
  533: *
  534:             IF( KSTEP.EQ.1 ) THEN
  535: *
  536: *              1-by-1 pivot block D(k): column k now holds
  537: *
  538: *              W(k) = L(k)*D(k)
  539: *
  540: *              where L(k) is the k-th column of L
  541: *
  542:                IF( K.LT.N ) THEN
  543: *
  544: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  545: *
  546: *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  547: *
  548:                   R1 = CONE / A( K, K )
  549:                   CALL ZSYR( UPLO, N-K, -R1, A( K+1, K ), 1,
  550:      $                       A( K+1, K+1 ), LDA )
  551: *
  552: *                 Store L(k) in column K
  553: *
  554:                   CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  555:                END IF
  556:             ELSE
  557: *
  558: *              2-by-2 pivot block D(k)
  559: *
  560:                IF( K.LT.N-1 ) THEN
  561: *
  562: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  563: *
  564: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
  565: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
  566: *
  567: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  568: *                 columns of L
  569: *
  570:                   D21 = A( K+1, K )
  571:                   D11 = A( K+1, K+1 ) / D21
  572:                   D22 = A( K, K ) / D21
  573:                   T = CONE / ( D11*D22-CONE )
  574:                   D21 = T / D21
  575: *
  576:                   DO 60 J = K + 2, N
  577:                      WK = D21*( D11*A( J, K )-A( J, K+1 ) )
  578:                      WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
  579:                      DO 50 I = J, N
  580:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
  581:      $                              A( I, K+1 )*WKP1
  582:    50                CONTINUE
  583:                      A( J, K ) = WK
  584:                      A( J, K+1 ) = WKP1
  585:    60             CONTINUE
  586:                END IF
  587:             END IF
  588:          END IF
  589: *
  590: *        Store details of the interchanges in IPIV
  591: *
  592:          IF( KSTEP.EQ.1 ) THEN
  593:             IPIV( K ) = KP
  594:          ELSE
  595:             IPIV( K ) = -KP
  596:             IPIV( K+1 ) = -KP
  597:          END IF
  598: *
  599: *        Increase K and return to the start of the main loop
  600: *
  601:          K = K + KSTEP
  602:          GO TO 40
  603: *
  604:       END IF
  605: *
  606:    70 CONTINUE
  607:       RETURN
  608: *
  609: *     End of ZSYTF2
  610: *
  611:       END

CVSweb interface <joel.bertrand@systella.fr>