Annotation of rpl/lapack/lapack/zsytf2.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
                      2: *
1.8     ! bertrand    3: *  -- LAPACK routine (version 3.3.1) --
1.1       bertrand    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand    6: *  -- April 2011                                                      --
1.1       bertrand    7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          UPLO
                     10:       INTEGER            INFO, LDA, N
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       INTEGER            IPIV( * )
                     14:       COMPLEX*16         A( LDA, * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  ZSYTF2 computes the factorization of a complex symmetric matrix A
                     21: *  using the Bunch-Kaufman diagonal pivoting method:
                     22: *
1.8     ! bertrand   23: *     A = U*D*U**T  or  A = L*D*L**T
1.1       bertrand   24: *
                     25: *  where U (or L) is a product of permutation and unit upper (lower)
1.8     ! bertrand   26: *  triangular matrices, U**T is the transpose of U, and D is symmetric and
1.1       bertrand   27: *  block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
                     28: *
                     29: *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
                     30: *
                     31: *  Arguments
                     32: *  =========
                     33: *
                     34: *  UPLO    (input) CHARACTER*1
                     35: *          Specifies whether the upper or lower triangular part of the
                     36: *          symmetric matrix A is stored:
                     37: *          = 'U':  Upper triangular
                     38: *          = 'L':  Lower triangular
                     39: *
                     40: *  N       (input) INTEGER
                     41: *          The order of the matrix A.  N >= 0.
                     42: *
                     43: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     44: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     45: *          n-by-n upper triangular part of A contains the upper
                     46: *          triangular part of the matrix A, and the strictly lower
                     47: *          triangular part of A is not referenced.  If UPLO = 'L', the
                     48: *          leading n-by-n lower triangular part of A contains the lower
                     49: *          triangular part of the matrix A, and the strictly upper
                     50: *          triangular part of A is not referenced.
                     51: *
                     52: *          On exit, the block diagonal matrix D and the multipliers used
                     53: *          to obtain the factor U or L (see below for further details).
                     54: *
                     55: *  LDA     (input) INTEGER
                     56: *          The leading dimension of the array A.  LDA >= max(1,N).
                     57: *
                     58: *  IPIV    (output) INTEGER array, dimension (N)
                     59: *          Details of the interchanges and the block structure of D.
                     60: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     61: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
                     62: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                     63: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                     64: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                     65: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                     66: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                     67: *
                     68: *  INFO    (output) INTEGER
                     69: *          = 0: successful exit
                     70: *          < 0: if INFO = -k, the k-th argument had an illegal value
                     71: *          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
                     72: *               has been completed, but the block diagonal matrix D is
                     73: *               exactly singular, and division by zero will occur if it
                     74: *               is used to solve a system of equations.
                     75: *
                     76: *  Further Details
                     77: *  ===============
                     78: *
                     79: *  09-29-06 - patch from
                     80: *    Bobby Cheng, MathWorks
                     81: *
                     82: *    Replace l.209 and l.377
                     83: *         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                     84: *    by
                     85: *         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
                     86: *
                     87: *  1-96 - Based on modifications by J. Lewis, Boeing Computer Services
                     88: *         Company
                     89: *
1.8     ! bertrand   90: *  If UPLO = 'U', then A = U*D*U**T, where
1.1       bertrand   91: *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
                     92: *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
                     93: *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                     94: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                     95: *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
                     96: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                     97: *
                     98: *             (   I    v    0   )   k-s
                     99: *     U(k) =  (   0    I    0   )   s
                    100: *             (   0    0    I   )   n-k
                    101: *                k-s   s   n-k
                    102: *
                    103: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
                    104: *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
                    105: *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
                    106: *
1.8     ! bertrand  107: *  If UPLO = 'L', then A = L*D*L**T, where
1.1       bertrand  108: *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
                    109: *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
                    110: *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
                    111: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
                    112: *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
                    113: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
                    114: *
                    115: *             (   I    0     0   )  k-1
                    116: *     L(k) =  (   0    I     0   )  s
                    117: *             (   0    v     I   )  n-k-s+1
                    118: *                k-1   s  n-k-s+1
                    119: *
                    120: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
                    121: *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
                    122: *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
                    123: *
                    124: *  =====================================================================
                    125: *
                    126: *     .. Parameters ..
                    127:       DOUBLE PRECISION   ZERO, ONE
                    128:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    129:       DOUBLE PRECISION   EIGHT, SEVTEN
                    130:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
                    131:       COMPLEX*16         CONE
                    132:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    133: *     ..
                    134: *     .. Local Scalars ..
                    135:       LOGICAL            UPPER
                    136:       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
                    137:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX
                    138:       COMPLEX*16         D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, Z
                    139: *     ..
                    140: *     .. External Functions ..
                    141:       LOGICAL            DISNAN, LSAME
                    142:       INTEGER            IZAMAX
                    143:       EXTERNAL           DISNAN, LSAME, IZAMAX
                    144: *     ..
                    145: *     .. External Subroutines ..
                    146:       EXTERNAL           XERBLA, ZSCAL, ZSWAP, ZSYR
                    147: *     ..
                    148: *     .. Intrinsic Functions ..
                    149:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
                    150: *     ..
                    151: *     .. Statement Functions ..
                    152:       DOUBLE PRECISION   CABS1
                    153: *     ..
                    154: *     .. Statement Function definitions ..
                    155:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
                    156: *     ..
                    157: *     .. Executable Statements ..
                    158: *
                    159: *     Test the input parameters.
                    160: *
                    161:       INFO = 0
                    162:       UPPER = LSAME( UPLO, 'U' )
                    163:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    164:          INFO = -1
                    165:       ELSE IF( N.LT.0 ) THEN
                    166:          INFO = -2
                    167:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    168:          INFO = -4
                    169:       END IF
                    170:       IF( INFO.NE.0 ) THEN
                    171:          CALL XERBLA( 'ZSYTF2', -INFO )
                    172:          RETURN
                    173:       END IF
                    174: *
                    175: *     Initialize ALPHA for use in choosing pivot block size.
                    176: *
                    177:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
                    178: *
                    179:       IF( UPPER ) THEN
                    180: *
1.8     ! bertrand  181: *        Factorize A as U*D*U**T using the upper triangle of A
1.1       bertrand  182: *
                    183: *        K is the main loop index, decreasing from N to 1 in steps of
                    184: *        1 or 2
                    185: *
                    186:          K = N
                    187:    10    CONTINUE
                    188: *
                    189: *        If K < 1, exit from loop
                    190: *
                    191:          IF( K.LT.1 )
                    192:      $      GO TO 70
                    193:          KSTEP = 1
                    194: *
                    195: *        Determine rows and columns to be interchanged and whether
                    196: *        a 1-by-1 or 2-by-2 pivot block will be used
                    197: *
                    198:          ABSAKK = CABS1( A( K, K ) )
                    199: *
                    200: *        IMAX is the row-index of the largest off-diagonal element in
                    201: *        column K, and COLMAX is its absolute value
                    202: *
                    203:          IF( K.GT.1 ) THEN
                    204:             IMAX = IZAMAX( K-1, A( 1, K ), 1 )
                    205:             COLMAX = CABS1( A( IMAX, K ) )
                    206:          ELSE
                    207:             COLMAX = ZERO
                    208:          END IF
                    209: *
                    210:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
                    211: *
1.8     ! bertrand  212: *           Column K is zero or NaN: set INFO and continue
1.1       bertrand  213: *
                    214:             IF( INFO.EQ.0 )
                    215:      $         INFO = K
                    216:             KP = K
                    217:          ELSE
                    218:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    219: *
                    220: *              no interchange, use 1-by-1 pivot block
                    221: *
                    222:                KP = K
                    223:             ELSE
                    224: *
                    225: *              JMAX is the column-index of the largest off-diagonal
                    226: *              element in row IMAX, and ROWMAX is its absolute value
                    227: *
                    228:                JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
                    229:                ROWMAX = CABS1( A( IMAX, JMAX ) )
                    230:                IF( IMAX.GT.1 ) THEN
                    231:                   JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
                    232:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
                    233:                END IF
                    234: *
                    235:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    236: *
                    237: *                 no interchange, use 1-by-1 pivot block
                    238: *
                    239:                   KP = K
                    240:                ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
                    241: *
                    242: *                 interchange rows and columns K and IMAX, use 1-by-1
                    243: *                 pivot block
                    244: *
                    245:                   KP = IMAX
                    246:                ELSE
                    247: *
                    248: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
                    249: *                 pivot block
                    250: *
                    251:                   KP = IMAX
                    252:                   KSTEP = 2
                    253:                END IF
                    254:             END IF
                    255: *
                    256:             KK = K - KSTEP + 1
                    257:             IF( KP.NE.KK ) THEN
                    258: *
                    259: *              Interchange rows and columns KK and KP in the leading
                    260: *              submatrix A(1:k,1:k)
                    261: *
                    262:                CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
                    263:                CALL ZSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
                    264:      $                     LDA )
                    265:                T = A( KK, KK )
                    266:                A( KK, KK ) = A( KP, KP )
                    267:                A( KP, KP ) = T
                    268:                IF( KSTEP.EQ.2 ) THEN
                    269:                   T = A( K-1, K )
                    270:                   A( K-1, K ) = A( KP, K )
                    271:                   A( KP, K ) = T
                    272:                END IF
                    273:             END IF
                    274: *
                    275: *           Update the leading submatrix
                    276: *
                    277:             IF( KSTEP.EQ.1 ) THEN
                    278: *
                    279: *              1-by-1 pivot block D(k): column k now holds
                    280: *
                    281: *              W(k) = U(k)*D(k)
                    282: *
                    283: *              where U(k) is the k-th column of U
                    284: *
                    285: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
                    286: *
1.8     ! bertrand  287: *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
1.1       bertrand  288: *
                    289:                R1 = CONE / A( K, K )
                    290:                CALL ZSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
                    291: *
                    292: *              Store U(k) in column k
                    293: *
                    294:                CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
                    295:             ELSE
                    296: *
                    297: *              2-by-2 pivot block D(k): columns k and k-1 now hold
                    298: *
                    299: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
                    300: *
                    301: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
                    302: *              of U
                    303: *
                    304: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
                    305: *
1.8     ! bertrand  306: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
        !           307: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
1.1       bertrand  308: *
                    309:                IF( K.GT.2 ) THEN
                    310: *
                    311:                   D12 = A( K-1, K )
                    312:                   D22 = A( K-1, K-1 ) / D12
                    313:                   D11 = A( K, K ) / D12
                    314:                   T = CONE / ( D11*D22-CONE )
                    315:                   D12 = T / D12
                    316: *
                    317:                   DO 30 J = K - 2, 1, -1
                    318:                      WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
                    319:                      WK = D12*( D22*A( J, K )-A( J, K-1 ) )
                    320:                      DO 20 I = J, 1, -1
                    321:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
                    322:      $                              A( I, K-1 )*WKM1
                    323:    20                CONTINUE
                    324:                      A( J, K ) = WK
                    325:                      A( J, K-1 ) = WKM1
                    326:    30             CONTINUE
                    327: *
                    328:                END IF
                    329: *
                    330:             END IF
                    331:          END IF
                    332: *
                    333: *        Store details of the interchanges in IPIV
                    334: *
                    335:          IF( KSTEP.EQ.1 ) THEN
                    336:             IPIV( K ) = KP
                    337:          ELSE
                    338:             IPIV( K ) = -KP
                    339:             IPIV( K-1 ) = -KP
                    340:          END IF
                    341: *
                    342: *        Decrease K and return to the start of the main loop
                    343: *
                    344:          K = K - KSTEP
                    345:          GO TO 10
                    346: *
                    347:       ELSE
                    348: *
1.8     ! bertrand  349: *        Factorize A as L*D*L**T using the lower triangle of A
1.1       bertrand  350: *
                    351: *        K is the main loop index, increasing from 1 to N in steps of
                    352: *        1 or 2
                    353: *
                    354:          K = 1
                    355:    40    CONTINUE
                    356: *
                    357: *        If K > N, exit from loop
                    358: *
                    359:          IF( K.GT.N )
                    360:      $      GO TO 70
                    361:          KSTEP = 1
                    362: *
                    363: *        Determine rows and columns to be interchanged and whether
                    364: *        a 1-by-1 or 2-by-2 pivot block will be used
                    365: *
                    366:          ABSAKK = CABS1( A( K, K ) )
                    367: *
                    368: *        IMAX is the row-index of the largest off-diagonal element in
                    369: *        column K, and COLMAX is its absolute value
                    370: *
                    371:          IF( K.LT.N ) THEN
                    372:             IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
                    373:             COLMAX = CABS1( A( IMAX, K ) )
                    374:          ELSE
                    375:             COLMAX = ZERO
                    376:          END IF
                    377: *
                    378:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
                    379: *
1.8     ! bertrand  380: *           Column K is zero or NaN: set INFO and continue
1.1       bertrand  381: *
                    382:             IF( INFO.EQ.0 )
                    383:      $         INFO = K
                    384:             KP = K
                    385:          ELSE
                    386:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    387: *
                    388: *              no interchange, use 1-by-1 pivot block
                    389: *
                    390:                KP = K
                    391:             ELSE
                    392: *
                    393: *              JMAX is the column-index of the largest off-diagonal
                    394: *              element in row IMAX, and ROWMAX is its absolute value
                    395: *
                    396:                JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
                    397:                ROWMAX = CABS1( A( IMAX, JMAX ) )
                    398:                IF( IMAX.LT.N ) THEN
                    399:                   JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
                    400:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
                    401:                END IF
                    402: *
                    403:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    404: *
                    405: *                 no interchange, use 1-by-1 pivot block
                    406: *
                    407:                   KP = K
                    408:                ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
                    409: *
                    410: *                 interchange rows and columns K and IMAX, use 1-by-1
                    411: *                 pivot block
                    412: *
                    413:                   KP = IMAX
                    414:                ELSE
                    415: *
                    416: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
                    417: *                 pivot block
                    418: *
                    419:                   KP = IMAX
                    420:                   KSTEP = 2
                    421:                END IF
                    422:             END IF
                    423: *
                    424:             KK = K + KSTEP - 1
                    425:             IF( KP.NE.KK ) THEN
                    426: *
                    427: *              Interchange rows and columns KK and KP in the trailing
                    428: *              submatrix A(k:n,k:n)
                    429: *
                    430:                IF( KP.LT.N )
                    431:      $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
                    432:                CALL ZSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
                    433:      $                     LDA )
                    434:                T = A( KK, KK )
                    435:                A( KK, KK ) = A( KP, KP )
                    436:                A( KP, KP ) = T
                    437:                IF( KSTEP.EQ.2 ) THEN
                    438:                   T = A( K+1, K )
                    439:                   A( K+1, K ) = A( KP, K )
                    440:                   A( KP, K ) = T
                    441:                END IF
                    442:             END IF
                    443: *
                    444: *           Update the trailing submatrix
                    445: *
                    446:             IF( KSTEP.EQ.1 ) THEN
                    447: *
                    448: *              1-by-1 pivot block D(k): column k now holds
                    449: *
                    450: *              W(k) = L(k)*D(k)
                    451: *
                    452: *              where L(k) is the k-th column of L
                    453: *
                    454:                IF( K.LT.N ) THEN
                    455: *
                    456: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
                    457: *
1.8     ! bertrand  458: *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
1.1       bertrand  459: *
                    460:                   R1 = CONE / A( K, K )
                    461:                   CALL ZSYR( UPLO, N-K, -R1, A( K+1, K ), 1,
                    462:      $                       A( K+1, K+1 ), LDA )
                    463: *
                    464: *                 Store L(k) in column K
                    465: *
                    466:                   CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
                    467:                END IF
                    468:             ELSE
                    469: *
                    470: *              2-by-2 pivot block D(k)
                    471: *
                    472:                IF( K.LT.N-1 ) THEN
                    473: *
                    474: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
                    475: *
1.8     ! bertrand  476: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
        !           477: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
1.1       bertrand  478: *
                    479: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
                    480: *                 columns of L
                    481: *
                    482:                   D21 = A( K+1, K )
                    483:                   D11 = A( K+1, K+1 ) / D21
                    484:                   D22 = A( K, K ) / D21
                    485:                   T = CONE / ( D11*D22-CONE )
                    486:                   D21 = T / D21
                    487: *
                    488:                   DO 60 J = K + 2, N
                    489:                      WK = D21*( D11*A( J, K )-A( J, K+1 ) )
                    490:                      WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
                    491:                      DO 50 I = J, N
                    492:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
                    493:      $                              A( I, K+1 )*WKP1
                    494:    50                CONTINUE
                    495:                      A( J, K ) = WK
                    496:                      A( J, K+1 ) = WKP1
                    497:    60             CONTINUE
                    498:                END IF
                    499:             END IF
                    500:          END IF
                    501: *
                    502: *        Store details of the interchanges in IPIV
                    503: *
                    504:          IF( KSTEP.EQ.1 ) THEN
                    505:             IPIV( K ) = KP
                    506:          ELSE
                    507:             IPIV( K ) = -KP
                    508:             IPIV( K+1 ) = -KP
                    509:          END IF
                    510: *
                    511: *        Increase K and return to the start of the main loop
                    512: *
                    513:          K = K + KSTEP
                    514:          GO TO 40
                    515: *
                    516:       END IF
                    517: *
                    518:    70 CONTINUE
                    519:       RETURN
                    520: *
                    521: *     End of ZSYTF2
                    522: *
                    523:       END

CVSweb interface <joel.bertrand@systella.fr>