Annotation of rpl/lapack/lapack/zsytf2.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       CHARACTER          UPLO
        !            10:       INTEGER            INFO, LDA, N
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       INTEGER            IPIV( * )
        !            14:       COMPLEX*16         A( LDA, * )
        !            15: *     ..
        !            16: *
        !            17: *  Purpose
        !            18: *  =======
        !            19: *
        !            20: *  ZSYTF2 computes the factorization of a complex symmetric matrix A
        !            21: *  using the Bunch-Kaufman diagonal pivoting method:
        !            22: *
        !            23: *     A = U*D*U'  or  A = L*D*L'
        !            24: *
        !            25: *  where U (or L) is a product of permutation and unit upper (lower)
        !            26: *  triangular matrices, U' is the transpose of U, and D is symmetric and
        !            27: *  block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
        !            28: *
        !            29: *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
        !            30: *
        !            31: *  Arguments
        !            32: *  =========
        !            33: *
        !            34: *  UPLO    (input) CHARACTER*1
        !            35: *          Specifies whether the upper or lower triangular part of the
        !            36: *          symmetric matrix A is stored:
        !            37: *          = 'U':  Upper triangular
        !            38: *          = 'L':  Lower triangular
        !            39: *
        !            40: *  N       (input) INTEGER
        !            41: *          The order of the matrix A.  N >= 0.
        !            42: *
        !            43: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            44: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
        !            45: *          n-by-n upper triangular part of A contains the upper
        !            46: *          triangular part of the matrix A, and the strictly lower
        !            47: *          triangular part of A is not referenced.  If UPLO = 'L', the
        !            48: *          leading n-by-n lower triangular part of A contains the lower
        !            49: *          triangular part of the matrix A, and the strictly upper
        !            50: *          triangular part of A is not referenced.
        !            51: *
        !            52: *          On exit, the block diagonal matrix D and the multipliers used
        !            53: *          to obtain the factor U or L (see below for further details).
        !            54: *
        !            55: *  LDA     (input) INTEGER
        !            56: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            57: *
        !            58: *  IPIV    (output) INTEGER array, dimension (N)
        !            59: *          Details of the interchanges and the block structure of D.
        !            60: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
        !            61: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
        !            62: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
        !            63: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
        !            64: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
        !            65: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
        !            66: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
        !            67: *
        !            68: *  INFO    (output) INTEGER
        !            69: *          = 0: successful exit
        !            70: *          < 0: if INFO = -k, the k-th argument had an illegal value
        !            71: *          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
        !            72: *               has been completed, but the block diagonal matrix D is
        !            73: *               exactly singular, and division by zero will occur if it
        !            74: *               is used to solve a system of equations.
        !            75: *
        !            76: *  Further Details
        !            77: *  ===============
        !            78: *
        !            79: *  09-29-06 - patch from
        !            80: *    Bobby Cheng, MathWorks
        !            81: *
        !            82: *    Replace l.209 and l.377
        !            83: *         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
        !            84: *    by
        !            85: *         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
        !            86: *
        !            87: *  1-96 - Based on modifications by J. Lewis, Boeing Computer Services
        !            88: *         Company
        !            89: *
        !            90: *  If UPLO = 'U', then A = U*D*U', where
        !            91: *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
        !            92: *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
        !            93: *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
        !            94: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
        !            95: *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
        !            96: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
        !            97: *
        !            98: *             (   I    v    0   )   k-s
        !            99: *     U(k) =  (   0    I    0   )   s
        !           100: *             (   0    0    I   )   n-k
        !           101: *                k-s   s   n-k
        !           102: *
        !           103: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
        !           104: *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
        !           105: *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
        !           106: *
        !           107: *  If UPLO = 'L', then A = L*D*L', where
        !           108: *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
        !           109: *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
        !           110: *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
        !           111: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
        !           112: *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
        !           113: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
        !           114: *
        !           115: *             (   I    0     0   )  k-1
        !           116: *     L(k) =  (   0    I     0   )  s
        !           117: *             (   0    v     I   )  n-k-s+1
        !           118: *                k-1   s  n-k-s+1
        !           119: *
        !           120: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
        !           121: *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
        !           122: *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
        !           123: *
        !           124: *  =====================================================================
        !           125: *
        !           126: *     .. Parameters ..
        !           127:       DOUBLE PRECISION   ZERO, ONE
        !           128:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           129:       DOUBLE PRECISION   EIGHT, SEVTEN
        !           130:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
        !           131:       COMPLEX*16         CONE
        !           132:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
        !           133: *     ..
        !           134: *     .. Local Scalars ..
        !           135:       LOGICAL            UPPER
        !           136:       INTEGER            I, IMAX, J, JMAX, K, KK, KP, KSTEP
        !           137:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX
        !           138:       COMPLEX*16         D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, Z
        !           139: *     ..
        !           140: *     .. External Functions ..
        !           141:       LOGICAL            DISNAN, LSAME
        !           142:       INTEGER            IZAMAX
        !           143:       EXTERNAL           DISNAN, LSAME, IZAMAX
        !           144: *     ..
        !           145: *     .. External Subroutines ..
        !           146:       EXTERNAL           XERBLA, ZSCAL, ZSWAP, ZSYR
        !           147: *     ..
        !           148: *     .. Intrinsic Functions ..
        !           149:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
        !           150: *     ..
        !           151: *     .. Statement Functions ..
        !           152:       DOUBLE PRECISION   CABS1
        !           153: *     ..
        !           154: *     .. Statement Function definitions ..
        !           155:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
        !           156: *     ..
        !           157: *     .. Executable Statements ..
        !           158: *
        !           159: *     Test the input parameters.
        !           160: *
        !           161:       INFO = 0
        !           162:       UPPER = LSAME( UPLO, 'U' )
        !           163:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           164:          INFO = -1
        !           165:       ELSE IF( N.LT.0 ) THEN
        !           166:          INFO = -2
        !           167:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           168:          INFO = -4
        !           169:       END IF
        !           170:       IF( INFO.NE.0 ) THEN
        !           171:          CALL XERBLA( 'ZSYTF2', -INFO )
        !           172:          RETURN
        !           173:       END IF
        !           174: *
        !           175: *     Initialize ALPHA for use in choosing pivot block size.
        !           176: *
        !           177:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
        !           178: *
        !           179:       IF( UPPER ) THEN
        !           180: *
        !           181: *        Factorize A as U*D*U' using the upper triangle of A
        !           182: *
        !           183: *        K is the main loop index, decreasing from N to 1 in steps of
        !           184: *        1 or 2
        !           185: *
        !           186:          K = N
        !           187:    10    CONTINUE
        !           188: *
        !           189: *        If K < 1, exit from loop
        !           190: *
        !           191:          IF( K.LT.1 )
        !           192:      $      GO TO 70
        !           193:          KSTEP = 1
        !           194: *
        !           195: *        Determine rows and columns to be interchanged and whether
        !           196: *        a 1-by-1 or 2-by-2 pivot block will be used
        !           197: *
        !           198:          ABSAKK = CABS1( A( K, K ) )
        !           199: *
        !           200: *        IMAX is the row-index of the largest off-diagonal element in
        !           201: *        column K, and COLMAX is its absolute value
        !           202: *
        !           203:          IF( K.GT.1 ) THEN
        !           204:             IMAX = IZAMAX( K-1, A( 1, K ), 1 )
        !           205:             COLMAX = CABS1( A( IMAX, K ) )
        !           206:          ELSE
        !           207:             COLMAX = ZERO
        !           208:          END IF
        !           209: *
        !           210:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
        !           211: *
        !           212: *           Column K is zero or contains a NaN: set INFO and continue
        !           213: *
        !           214:             IF( INFO.EQ.0 )
        !           215:      $         INFO = K
        !           216:             KP = K
        !           217:          ELSE
        !           218:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
        !           219: *
        !           220: *              no interchange, use 1-by-1 pivot block
        !           221: *
        !           222:                KP = K
        !           223:             ELSE
        !           224: *
        !           225: *              JMAX is the column-index of the largest off-diagonal
        !           226: *              element in row IMAX, and ROWMAX is its absolute value
        !           227: *
        !           228:                JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
        !           229:                ROWMAX = CABS1( A( IMAX, JMAX ) )
        !           230:                IF( IMAX.GT.1 ) THEN
        !           231:                   JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
        !           232:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
        !           233:                END IF
        !           234: *
        !           235:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
        !           236: *
        !           237: *                 no interchange, use 1-by-1 pivot block
        !           238: *
        !           239:                   KP = K
        !           240:                ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
        !           241: *
        !           242: *                 interchange rows and columns K and IMAX, use 1-by-1
        !           243: *                 pivot block
        !           244: *
        !           245:                   KP = IMAX
        !           246:                ELSE
        !           247: *
        !           248: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
        !           249: *                 pivot block
        !           250: *
        !           251:                   KP = IMAX
        !           252:                   KSTEP = 2
        !           253:                END IF
        !           254:             END IF
        !           255: *
        !           256:             KK = K - KSTEP + 1
        !           257:             IF( KP.NE.KK ) THEN
        !           258: *
        !           259: *              Interchange rows and columns KK and KP in the leading
        !           260: *              submatrix A(1:k,1:k)
        !           261: *
        !           262:                CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
        !           263:                CALL ZSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
        !           264:      $                     LDA )
        !           265:                T = A( KK, KK )
        !           266:                A( KK, KK ) = A( KP, KP )
        !           267:                A( KP, KP ) = T
        !           268:                IF( KSTEP.EQ.2 ) THEN
        !           269:                   T = A( K-1, K )
        !           270:                   A( K-1, K ) = A( KP, K )
        !           271:                   A( KP, K ) = T
        !           272:                END IF
        !           273:             END IF
        !           274: *
        !           275: *           Update the leading submatrix
        !           276: *
        !           277:             IF( KSTEP.EQ.1 ) THEN
        !           278: *
        !           279: *              1-by-1 pivot block D(k): column k now holds
        !           280: *
        !           281: *              W(k) = U(k)*D(k)
        !           282: *
        !           283: *              where U(k) is the k-th column of U
        !           284: *
        !           285: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
        !           286: *
        !           287: *              A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)'
        !           288: *
        !           289:                R1 = CONE / A( K, K )
        !           290:                CALL ZSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
        !           291: *
        !           292: *              Store U(k) in column k
        !           293: *
        !           294:                CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
        !           295:             ELSE
        !           296: *
        !           297: *              2-by-2 pivot block D(k): columns k and k-1 now hold
        !           298: *
        !           299: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
        !           300: *
        !           301: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
        !           302: *              of U
        !           303: *
        !           304: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
        !           305: *
        !           306: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )'
        !           307: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )'
        !           308: *
        !           309:                IF( K.GT.2 ) THEN
        !           310: *
        !           311:                   D12 = A( K-1, K )
        !           312:                   D22 = A( K-1, K-1 ) / D12
        !           313:                   D11 = A( K, K ) / D12
        !           314:                   T = CONE / ( D11*D22-CONE )
        !           315:                   D12 = T / D12
        !           316: *
        !           317:                   DO 30 J = K - 2, 1, -1
        !           318:                      WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
        !           319:                      WK = D12*( D22*A( J, K )-A( J, K-1 ) )
        !           320:                      DO 20 I = J, 1, -1
        !           321:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
        !           322:      $                              A( I, K-1 )*WKM1
        !           323:    20                CONTINUE
        !           324:                      A( J, K ) = WK
        !           325:                      A( J, K-1 ) = WKM1
        !           326:    30             CONTINUE
        !           327: *
        !           328:                END IF
        !           329: *
        !           330:             END IF
        !           331:          END IF
        !           332: *
        !           333: *        Store details of the interchanges in IPIV
        !           334: *
        !           335:          IF( KSTEP.EQ.1 ) THEN
        !           336:             IPIV( K ) = KP
        !           337:          ELSE
        !           338:             IPIV( K ) = -KP
        !           339:             IPIV( K-1 ) = -KP
        !           340:          END IF
        !           341: *
        !           342: *        Decrease K and return to the start of the main loop
        !           343: *
        !           344:          K = K - KSTEP
        !           345:          GO TO 10
        !           346: *
        !           347:       ELSE
        !           348: *
        !           349: *        Factorize A as L*D*L' using the lower triangle of A
        !           350: *
        !           351: *        K is the main loop index, increasing from 1 to N in steps of
        !           352: *        1 or 2
        !           353: *
        !           354:          K = 1
        !           355:    40    CONTINUE
        !           356: *
        !           357: *        If K > N, exit from loop
        !           358: *
        !           359:          IF( K.GT.N )
        !           360:      $      GO TO 70
        !           361:          KSTEP = 1
        !           362: *
        !           363: *        Determine rows and columns to be interchanged and whether
        !           364: *        a 1-by-1 or 2-by-2 pivot block will be used
        !           365: *
        !           366:          ABSAKK = CABS1( A( K, K ) )
        !           367: *
        !           368: *        IMAX is the row-index of the largest off-diagonal element in
        !           369: *        column K, and COLMAX is its absolute value
        !           370: *
        !           371:          IF( K.LT.N ) THEN
        !           372:             IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
        !           373:             COLMAX = CABS1( A( IMAX, K ) )
        !           374:          ELSE
        !           375:             COLMAX = ZERO
        !           376:          END IF
        !           377: *
        !           378:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
        !           379: *
        !           380: *           Column K is zero or contains a NaN: set INFO and continue
        !           381: *
        !           382:             IF( INFO.EQ.0 )
        !           383:      $         INFO = K
        !           384:             KP = K
        !           385:          ELSE
        !           386:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
        !           387: *
        !           388: *              no interchange, use 1-by-1 pivot block
        !           389: *
        !           390:                KP = K
        !           391:             ELSE
        !           392: *
        !           393: *              JMAX is the column-index of the largest off-diagonal
        !           394: *              element in row IMAX, and ROWMAX is its absolute value
        !           395: *
        !           396:                JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
        !           397:                ROWMAX = CABS1( A( IMAX, JMAX ) )
        !           398:                IF( IMAX.LT.N ) THEN
        !           399:                   JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
        !           400:                   ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
        !           401:                END IF
        !           402: *
        !           403:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
        !           404: *
        !           405: *                 no interchange, use 1-by-1 pivot block
        !           406: *
        !           407:                   KP = K
        !           408:                ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
        !           409: *
        !           410: *                 interchange rows and columns K and IMAX, use 1-by-1
        !           411: *                 pivot block
        !           412: *
        !           413:                   KP = IMAX
        !           414:                ELSE
        !           415: *
        !           416: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
        !           417: *                 pivot block
        !           418: *
        !           419:                   KP = IMAX
        !           420:                   KSTEP = 2
        !           421:                END IF
        !           422:             END IF
        !           423: *
        !           424:             KK = K + KSTEP - 1
        !           425:             IF( KP.NE.KK ) THEN
        !           426: *
        !           427: *              Interchange rows and columns KK and KP in the trailing
        !           428: *              submatrix A(k:n,k:n)
        !           429: *
        !           430:                IF( KP.LT.N )
        !           431:      $            CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
        !           432:                CALL ZSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
        !           433:      $                     LDA )
        !           434:                T = A( KK, KK )
        !           435:                A( KK, KK ) = A( KP, KP )
        !           436:                A( KP, KP ) = T
        !           437:                IF( KSTEP.EQ.2 ) THEN
        !           438:                   T = A( K+1, K )
        !           439:                   A( K+1, K ) = A( KP, K )
        !           440:                   A( KP, K ) = T
        !           441:                END IF
        !           442:             END IF
        !           443: *
        !           444: *           Update the trailing submatrix
        !           445: *
        !           446:             IF( KSTEP.EQ.1 ) THEN
        !           447: *
        !           448: *              1-by-1 pivot block D(k): column k now holds
        !           449: *
        !           450: *              W(k) = L(k)*D(k)
        !           451: *
        !           452: *              where L(k) is the k-th column of L
        !           453: *
        !           454:                IF( K.LT.N ) THEN
        !           455: *
        !           456: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
        !           457: *
        !           458: *                 A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)'
        !           459: *
        !           460:                   R1 = CONE / A( K, K )
        !           461:                   CALL ZSYR( UPLO, N-K, -R1, A( K+1, K ), 1,
        !           462:      $                       A( K+1, K+1 ), LDA )
        !           463: *
        !           464: *                 Store L(k) in column K
        !           465: *
        !           466:                   CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
        !           467:                END IF
        !           468:             ELSE
        !           469: *
        !           470: *              2-by-2 pivot block D(k)
        !           471: *
        !           472:                IF( K.LT.N-1 ) THEN
        !           473: *
        !           474: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
        !           475: *
        !           476: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )'
        !           477: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )'
        !           478: *
        !           479: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
        !           480: *                 columns of L
        !           481: *
        !           482:                   D21 = A( K+1, K )
        !           483:                   D11 = A( K+1, K+1 ) / D21
        !           484:                   D22 = A( K, K ) / D21
        !           485:                   T = CONE / ( D11*D22-CONE )
        !           486:                   D21 = T / D21
        !           487: *
        !           488:                   DO 60 J = K + 2, N
        !           489:                      WK = D21*( D11*A( J, K )-A( J, K+1 ) )
        !           490:                      WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
        !           491:                      DO 50 I = J, N
        !           492:                         A( I, J ) = A( I, J ) - A( I, K )*WK -
        !           493:      $                              A( I, K+1 )*WKP1
        !           494:    50                CONTINUE
        !           495:                      A( J, K ) = WK
        !           496:                      A( J, K+1 ) = WKP1
        !           497:    60             CONTINUE
        !           498:                END IF
        !           499:             END IF
        !           500:          END IF
        !           501: *
        !           502: *        Store details of the interchanges in IPIV
        !           503: *
        !           504:          IF( KSTEP.EQ.1 ) THEN
        !           505:             IPIV( K ) = KP
        !           506:          ELSE
        !           507:             IPIV( K ) = -KP
        !           508:             IPIV( K+1 ) = -KP
        !           509:          END IF
        !           510: *
        !           511: *        Increase K and return to the start of the main loop
        !           512: *
        !           513:          K = K + KSTEP
        !           514:          GO TO 40
        !           515: *
        !           516:       END IF
        !           517: *
        !           518:    70 CONTINUE
        !           519:       RETURN
        !           520: *
        !           521: *     End of ZSYTF2
        !           522: *
        !           523:       END

CVSweb interface <joel.bertrand@systella.fr>