Annotation of rpl/lapack/lapack/zsysvxx.f, revision 1.6

1.5       bertrand    1: *> \brief <b> ZSYSVXX computes the solution to system of linear equations A * X = B for SY matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZSYSVXX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsysvxx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsysvxx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsysvxx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
                     22: *                           EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
                     23: *                           N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
                     24: *                           NPARAMS, PARAMS, WORK, RWORK, INFO )
                     25: * 
                     26: *       .. Scalar Arguments ..
                     27: *       CHARACTER          EQUED, FACT, UPLO
                     28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                     29: *      $                   N_ERR_BNDS
                     30: *       DOUBLE PRECISION   RCOND, RPVGRW
                     31: *       ..
                     32: *       .. Array Arguments ..
                     33: *       INTEGER            IPIV( * )
                     34: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     35: *      $                   X( LDX, * ), WORK( * )
                     36: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
                     37: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     38: *      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
                     39: *       ..
                     40: *  
                     41: *
                     42: *> \par Purpose:
                     43: *  =============
                     44: *>
                     45: *> \verbatim
                     46: *>
                     47: *>    ZSYSVXX uses the diagonal pivoting factorization to compute the
                     48: *>    solution to a complex*16 system of linear equations A * X = B, where
                     49: *>    A is an N-by-N symmetric matrix and X and B are N-by-NRHS
                     50: *>    matrices.
                     51: *>
                     52: *>    If requested, both normwise and maximum componentwise error bounds
                     53: *>    are returned. ZSYSVXX will return a solution with a tiny
                     54: *>    guaranteed error (O(eps) where eps is the working machine
                     55: *>    precision) unless the matrix is very ill-conditioned, in which
                     56: *>    case a warning is returned. Relevant condition numbers also are
                     57: *>    calculated and returned.
                     58: *>
                     59: *>    ZSYSVXX accepts user-provided factorizations and equilibration
                     60: *>    factors; see the definitions of the FACT and EQUED options.
                     61: *>    Solving with refinement and using a factorization from a previous
                     62: *>    ZSYSVXX call will also produce a solution with either O(eps)
                     63: *>    errors or warnings, but we cannot make that claim for general
                     64: *>    user-provided factorizations and equilibration factors if they
                     65: *>    differ from what ZSYSVXX would itself produce.
                     66: *> \endverbatim
                     67: *
                     68: *> \par Description:
                     69: *  =================
                     70: *>
                     71: *> \verbatim
                     72: *>
                     73: *>    The following steps are performed:
                     74: *>
                     75: *>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
                     76: *>    the system:
                     77: *>
                     78: *>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
                     79: *>
                     80: *>    Whether or not the system will be equilibrated depends on the
                     81: *>    scaling of the matrix A, but if equilibration is used, A is
                     82: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
                     83: *>
                     84: *>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
                     85: *>    the matrix A (after equilibration if FACT = 'E') as
                     86: *>
                     87: *>       A = U * D * U**T,  if UPLO = 'U', or
                     88: *>       A = L * D * L**T,  if UPLO = 'L',
                     89: *>
                     90: *>    where U (or L) is a product of permutation and unit upper (lower)
                     91: *>    triangular matrices, and D is symmetric and block diagonal with
                     92: *>    1-by-1 and 2-by-2 diagonal blocks.
                     93: *>
                     94: *>    3. If some D(i,i)=0, so that D is exactly singular, then the
                     95: *>    routine returns with INFO = i. Otherwise, the factored form of A
                     96: *>    is used to estimate the condition number of the matrix A (see
                     97: *>    argument RCOND).  If the reciprocal of the condition number is
                     98: *>    less than machine precision, the routine still goes on to solve
                     99: *>    for X and compute error bounds as described below.
                    100: *>
                    101: *>    4. The system of equations is solved for X using the factored form
                    102: *>    of A.
                    103: *>
                    104: *>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
                    105: *>    the routine will use iterative refinement to try to get a small
                    106: *>    error and error bounds.  Refinement calculates the residual to at
                    107: *>    least twice the working precision.
                    108: *>
                    109: *>    6. If equilibration was used, the matrix X is premultiplied by
                    110: *>    diag(R) so that it solves the original system before
                    111: *>    equilibration.
                    112: *> \endverbatim
                    113: *
                    114: *  Arguments:
                    115: *  ==========
                    116: *
                    117: *> \verbatim
                    118: *>     Some optional parameters are bundled in the PARAMS array.  These
                    119: *>     settings determine how refinement is performed, but often the
                    120: *>     defaults are acceptable.  If the defaults are acceptable, users
                    121: *>     can pass NPARAMS = 0 which prevents the source code from accessing
                    122: *>     the PARAMS argument.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] FACT
                    126: *> \verbatim
                    127: *>          FACT is CHARACTER*1
                    128: *>     Specifies whether or not the factored form of the matrix A is
                    129: *>     supplied on entry, and if not, whether the matrix A should be
                    130: *>     equilibrated before it is factored.
                    131: *>       = 'F':  On entry, AF and IPIV contain the factored form of A.
                    132: *>               If EQUED is not 'N', the matrix A has been
                    133: *>               equilibrated with scaling factors given by S.
                    134: *>               A, AF, and IPIV are not modified.
                    135: *>       = 'N':  The matrix A will be copied to AF and factored.
                    136: *>       = 'E':  The matrix A will be equilibrated if necessary, then
                    137: *>               copied to AF and factored.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] UPLO
                    141: *> \verbatim
                    142: *>          UPLO is CHARACTER*1
                    143: *>       = 'U':  Upper triangle of A is stored;
                    144: *>       = 'L':  Lower triangle of A is stored.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[in] N
                    148: *> \verbatim
                    149: *>          N is INTEGER
                    150: *>     The number of linear equations, i.e., the order of the
                    151: *>     matrix A.  N >= 0.
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[in] NRHS
                    155: *> \verbatim
                    156: *>          NRHS is INTEGER
                    157: *>     The number of right hand sides, i.e., the number of columns
                    158: *>     of the matrices B and X.  NRHS >= 0.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[in,out] A
                    162: *> \verbatim
                    163: *>          A is COMPLEX*16 array, dimension (LDA,N)
                    164: *>     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
                    165: *>     upper triangular part of A contains the upper triangular
                    166: *>     part of the matrix A, and the strictly lower triangular
                    167: *>     part of A is not referenced.  If UPLO = 'L', the leading
                    168: *>     N-by-N lower triangular part of A contains the lower
                    169: *>     triangular part of the matrix A, and the strictly upper
                    170: *>     triangular part of A is not referenced.
                    171: *>
                    172: *>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                    173: *>     diag(S)*A*diag(S).
                    174: *> \endverbatim
                    175: *>
                    176: *> \param[in] LDA
                    177: *> \verbatim
                    178: *>          LDA is INTEGER
                    179: *>     The leading dimension of the array A.  LDA >= max(1,N).
                    180: *> \endverbatim
                    181: *>
                    182: *> \param[in,out] AF
                    183: *> \verbatim
                    184: *>          AF is or output) COMPLEX*16 array, dimension (LDAF,N)
                    185: *>     If FACT = 'F', then AF is an input argument and on entry
                    186: *>     contains the block diagonal matrix D and the multipliers
                    187: *>     used to obtain the factor U or L from the factorization A =
                    188: *>     U*D*U**T or A = L*D*L**T as computed by DSYTRF.
                    189: *>
                    190: *>     If FACT = 'N', then AF is an output argument and on exit
                    191: *>     returns the block diagonal matrix D and the multipliers
                    192: *>     used to obtain the factor U or L from the factorization A =
                    193: *>     U*D*U**T or A = L*D*L**T.
                    194: *> \endverbatim
                    195: *>
                    196: *> \param[in] LDAF
                    197: *> \verbatim
                    198: *>          LDAF is INTEGER
                    199: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                    200: *> \endverbatim
                    201: *>
                    202: *> \param[in,out] IPIV
                    203: *> \verbatim
                    204: *>          IPIV is or output) INTEGER array, dimension (N)
                    205: *>     If FACT = 'F', then IPIV is an input argument and on entry
                    206: *>     contains details of the interchanges and the block
                    207: *>     structure of D, as determined by DSYTRF.  If IPIV(k) > 0,
                    208: *>     then rows and columns k and IPIV(k) were interchanged and
                    209: *>     D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U' and
                    210: *>     IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
                    211: *>     -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
                    212: *>     diagonal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
                    213: *>     then rows and columns k+1 and -IPIV(k) were interchanged
                    214: *>     and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    215: *>
                    216: *>     If FACT = 'N', then IPIV is an output argument and on exit
                    217: *>     contains details of the interchanges and the block
                    218: *>     structure of D, as determined by DSYTRF.
                    219: *> \endverbatim
                    220: *>
                    221: *> \param[in,out] EQUED
                    222: *> \verbatim
                    223: *>          EQUED is or output) CHARACTER*1
                    224: *>     Specifies the form of equilibration that was done.
                    225: *>       = 'N':  No equilibration (always true if FACT = 'N').
                    226: *>       = 'Y':  Both row and column equilibration, i.e., A has been
                    227: *>               replaced by diag(S) * A * diag(S).
                    228: *>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    229: *>     output argument.
                    230: *> \endverbatim
                    231: *>
                    232: *> \param[in,out] S
                    233: *> \verbatim
                    234: *>          S is or output) DOUBLE PRECISION array, dimension (N)
                    235: *>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
                    236: *>     the left and right by diag(S).  S is an input argument if FACT =
                    237: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
                    238: *>     = 'Y', each element of S must be positive.  If S is output, each
                    239: *>     element of S is a power of the radix. If S is input, each element
                    240: *>     of S should be a power of the radix to ensure a reliable solution
                    241: *>     and error estimates. Scaling by powers of the radix does not cause
                    242: *>     rounding errors unless the result underflows or overflows.
                    243: *>     Rounding errors during scaling lead to refining with a matrix that
                    244: *>     is not equivalent to the input matrix, producing error estimates
                    245: *>     that may not be reliable.
                    246: *> \endverbatim
                    247: *>
                    248: *> \param[in,out] B
                    249: *> \verbatim
                    250: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    251: *>     On entry, the N-by-NRHS right hand side matrix B.
                    252: *>     On exit,
                    253: *>     if EQUED = 'N', B is not modified;
                    254: *>     if EQUED = 'Y', B is overwritten by diag(S)*B;
                    255: *> \endverbatim
                    256: *>
                    257: *> \param[in] LDB
                    258: *> \verbatim
                    259: *>          LDB is INTEGER
                    260: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    261: *> \endverbatim
                    262: *>
                    263: *> \param[out] X
                    264: *> \verbatim
                    265: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    266: *>     If INFO = 0, the N-by-NRHS solution matrix X to the original
                    267: *>     system of equations.  Note that A and B are modified on exit if
                    268: *>     EQUED .ne. 'N', and the solution to the equilibrated system is
                    269: *>     inv(diag(S))*X.
                    270: *> \endverbatim
                    271: *>
                    272: *> \param[in] LDX
                    273: *> \verbatim
                    274: *>          LDX is INTEGER
                    275: *>     The leading dimension of the array X.  LDX >= max(1,N).
                    276: *> \endverbatim
                    277: *>
                    278: *> \param[out] RCOND
                    279: *> \verbatim
                    280: *>          RCOND is DOUBLE PRECISION
                    281: *>     Reciprocal scaled condition number.  This is an estimate of the
                    282: *>     reciprocal Skeel condition number of the matrix A after
                    283: *>     equilibration (if done).  If this is less than the machine
                    284: *>     precision (in particular, if it is zero), the matrix is singular
                    285: *>     to working precision.  Note that the error may still be small even
                    286: *>     if this number is very small and the matrix appears ill-
                    287: *>     conditioned.
                    288: *> \endverbatim
                    289: *>
                    290: *> \param[out] RPVGRW
                    291: *> \verbatim
                    292: *>          RPVGRW is DOUBLE PRECISION
                    293: *>     Reciprocal pivot growth.  On exit, this contains the reciprocal
                    294: *>     pivot growth factor norm(A)/norm(U). The "max absolute element"
                    295: *>     norm is used.  If this is much less than 1, then the stability of
                    296: *>     the LU factorization of the (equilibrated) matrix A could be poor.
                    297: *>     This also means that the solution X, estimated condition numbers,
                    298: *>     and error bounds could be unreliable. If factorization fails with
                    299: *>     0<INFO<=N, then this contains the reciprocal pivot growth factor
                    300: *>     for the leading INFO columns of A.
                    301: *> \endverbatim
                    302: *>
                    303: *> \param[out] BERR
                    304: *> \verbatim
                    305: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    306: *>     Componentwise relative backward error.  This is the
                    307: *>     componentwise relative backward error of each solution vector X(j)
                    308: *>     (i.e., the smallest relative change in any element of A or B that
                    309: *>     makes X(j) an exact solution).
                    310: *> \endverbatim
                    311: *>
                    312: *> \param[in] N_ERR_BNDS
                    313: *> \verbatim
                    314: *>          N_ERR_BNDS is INTEGER
                    315: *>     Number of error bounds to return for each right hand side
                    316: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
                    317: *>     ERR_BNDS_COMP below.
                    318: *> \endverbatim
                    319: *>
                    320: *> \param[out] ERR_BNDS_NORM
                    321: *> \verbatim
                    322: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    323: *>     For each right-hand side, this array contains information about
                    324: *>     various error bounds and condition numbers corresponding to the
                    325: *>     normwise relative error, which is defined as follows:
                    326: *>
                    327: *>     Normwise relative error in the ith solution vector:
                    328: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    329: *>            ------------------------------
                    330: *>                  max_j abs(X(j,i))
                    331: *>
                    332: *>     The array is indexed by the type of error information as described
                    333: *>     below. There currently are up to three pieces of information
                    334: *>     returned.
                    335: *>
                    336: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    337: *>     right-hand side.
                    338: *>
                    339: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    340: *>     three fields:
                    341: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    342: *>              reciprocal condition number is less than the threshold
                    343: *>              sqrt(n) * dlamch('Epsilon').
                    344: *>
                    345: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    346: *>              almost certainly within a factor of 10 of the true error
                    347: *>              so long as the next entry is greater than the threshold
                    348: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    349: *>              be trusted if the previous boolean is true.
                    350: *>
                    351: *>     err = 3  Reciprocal condition number: Estimated normwise
                    352: *>              reciprocal condition number.  Compared with the threshold
                    353: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
                    354: *>              estimate is "guaranteed". These reciprocal condition
                    355: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    356: *>              appropriately scaled matrix Z.
                    357: *>              Let Z = S*A, where S scales each row by a power of the
                    358: *>              radix so all absolute row sums of Z are approximately 1.
                    359: *>
                    360: *>     See Lapack Working Note 165 for further details and extra
                    361: *>     cautions.
                    362: *> \endverbatim
                    363: *>
                    364: *> \param[out] ERR_BNDS_COMP
                    365: *> \verbatim
                    366: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    367: *>     For each right-hand side, this array contains information about
                    368: *>     various error bounds and condition numbers corresponding to the
                    369: *>     componentwise relative error, which is defined as follows:
                    370: *>
                    371: *>     Componentwise relative error in the ith solution vector:
                    372: *>                    abs(XTRUE(j,i) - X(j,i))
                    373: *>             max_j ----------------------
                    374: *>                         abs(X(j,i))
                    375: *>
                    376: *>     The array is indexed by the right-hand side i (on which the
                    377: *>     componentwise relative error depends), and the type of error
                    378: *>     information as described below. There currently are up to three
                    379: *>     pieces of information returned for each right-hand side. If
                    380: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    381: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    382: *>     the first (:,N_ERR_BNDS) entries are returned.
                    383: *>
                    384: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    385: *>     right-hand side.
                    386: *>
                    387: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    388: *>     three fields:
                    389: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    390: *>              reciprocal condition number is less than the threshold
                    391: *>              sqrt(n) * dlamch('Epsilon').
                    392: *>
                    393: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    394: *>              almost certainly within a factor of 10 of the true error
                    395: *>              so long as the next entry is greater than the threshold
                    396: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    397: *>              be trusted if the previous boolean is true.
                    398: *>
                    399: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    400: *>              reciprocal condition number.  Compared with the threshold
                    401: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
                    402: *>              estimate is "guaranteed". These reciprocal condition
                    403: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    404: *>              appropriately scaled matrix Z.
                    405: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    406: *>              current right-hand side and S scales each row of
                    407: *>              A*diag(x) by a power of the radix so all absolute row
                    408: *>              sums of Z are approximately 1.
                    409: *>
                    410: *>     See Lapack Working Note 165 for further details and extra
                    411: *>     cautions.
                    412: *> \endverbatim
                    413: *>
                    414: *> \param[in] NPARAMS
                    415: *> \verbatim
                    416: *>          NPARAMS is INTEGER
                    417: *>     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
                    418: *>     PARAMS array is never referenced and default values are used.
                    419: *> \endverbatim
                    420: *>
                    421: *> \param[in,out] PARAMS
                    422: *> \verbatim
                    423: *>          PARAMS is / output) DOUBLE PRECISION array, dimension NPARAMS
                    424: *>     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
                    425: *>     that entry will be filled with default value used for that
                    426: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
                    427: *>     are used for higher-numbered parameters.
                    428: *>
                    429: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
                    430: *>            refinement or not.
                    431: *>         Default: 1.0D+0
                    432: *>            = 0.0 : No refinement is performed, and no error bounds are
                    433: *>                    computed.
                    434: *>            = 1.0 : Use the extra-precise refinement algorithm.
                    435: *>              (other values are reserved for future use)
                    436: *>
                    437: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
                    438: *>            computations allowed for refinement.
                    439: *>         Default: 10
                    440: *>         Aggressive: Set to 100 to permit convergence using approximate
                    441: *>                     factorizations or factorizations other than LU. If
                    442: *>                     the factorization uses a technique other than
                    443: *>                     Gaussian elimination, the guarantees in
                    444: *>                     err_bnds_norm and err_bnds_comp may no longer be
                    445: *>                     trustworthy.
                    446: *>
                    447: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
                    448: *>            will attempt to find a solution with small componentwise
                    449: *>            relative error in the double-precision algorithm.  Positive
                    450: *>            is true, 0.0 is false.
                    451: *>         Default: 1.0 (attempt componentwise convergence)
                    452: *> \endverbatim
                    453: *>
                    454: *> \param[out] WORK
                    455: *> \verbatim
                    456: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    457: *> \endverbatim
                    458: *>
                    459: *> \param[out] RWORK
                    460: *> \verbatim
                    461: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
                    462: *> \endverbatim
                    463: *>
                    464: *> \param[out] INFO
                    465: *> \verbatim
                    466: *>          INFO is INTEGER
                    467: *>       = 0:  Successful exit. The solution to every right-hand side is
                    468: *>         guaranteed.
                    469: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
                    470: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
                    471: *>         has been completed, but the factor U is exactly singular, so
                    472: *>         the solution and error bounds could not be computed. RCOND = 0
                    473: *>         is returned.
                    474: *>       = N+J: The solution corresponding to the Jth right-hand side is
                    475: *>         not guaranteed. The solutions corresponding to other right-
                    476: *>         hand sides K with K > J may not be guaranteed as well, but
                    477: *>         only the first such right-hand side is reported. If a small
                    478: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
                    479: *>         the Jth right-hand side is the first with a normwise error
                    480: *>         bound that is not guaranteed (the smallest J such
                    481: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
                    482: *>         the Jth right-hand side is the first with either a normwise or
                    483: *>         componentwise error bound that is not guaranteed (the smallest
                    484: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
                    485: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
                    486: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
                    487: *>         about all of the right-hand sides check ERR_BNDS_NORM or
                    488: *>         ERR_BNDS_COMP.
                    489: *> \endverbatim
                    490: *
                    491: *  Authors:
                    492: *  ========
                    493: *
                    494: *> \author Univ. of Tennessee 
                    495: *> \author Univ. of California Berkeley 
                    496: *> \author Univ. of Colorado Denver 
                    497: *> \author NAG Ltd. 
                    498: *
                    499: *> \date November 2011
                    500: *
                    501: *> \ingroup complex16SYsolve
                    502: *
                    503: *  =====================================================================
1.1       bertrand  504:       SUBROUTINE ZSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
                    505:      $                    EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
                    506:      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
                    507:      $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
                    508: *
1.5       bertrand  509: *  -- LAPACK driver routine (version 3.4.0) --
                    510: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    511: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    512: *     November 2011
1.1       bertrand  513: *
                    514: *     .. Scalar Arguments ..
                    515:       CHARACTER          EQUED, FACT, UPLO
                    516:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                    517:      $                   N_ERR_BNDS
                    518:       DOUBLE PRECISION   RCOND, RPVGRW
                    519: *     ..
                    520: *     .. Array Arguments ..
                    521:       INTEGER            IPIV( * )
                    522:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    523:      $                   X( LDX, * ), WORK( * )
                    524:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
                    525:      $                   ERR_BNDS_NORM( NRHS, * ),
                    526:      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
                    527: *     ..
                    528: *
1.5       bertrand  529: *  ==================================================================
1.1       bertrand  530: *
                    531: *     .. Parameters ..
                    532:       DOUBLE PRECISION   ZERO, ONE
                    533:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    534:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    535:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    536:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    537:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    538:      $                   BERR_I = 3 )
                    539:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    540:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    541:      $                   PIV_GROWTH_I = 9 )
                    542: *     ..
                    543: *     .. Local Scalars ..
                    544:       LOGICAL            EQUIL, NOFACT, RCEQU
                    545:       INTEGER            INFEQU, J
                    546:       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
                    547: *     ..
                    548: *     .. External Functions ..
                    549:       EXTERNAL           LSAME, DLAMCH, ZLA_SYRPVGRW
                    550:       LOGICAL            LSAME
                    551:       DOUBLE PRECISION   DLAMCH, ZLA_SYRPVGRW
                    552: *     ..
                    553: *     .. External Subroutines ..
                    554:       EXTERNAL           ZSYCON, ZSYEQUB, ZSYTRF, ZSYTRS, ZLACPY,
                    555:      $                   ZLAQSY, XERBLA, ZLASCL2, ZSYRFSX
                    556: *     ..
                    557: *     .. Intrinsic Functions ..
                    558:       INTRINSIC          MAX, MIN
                    559: *     ..
                    560: *     .. Executable Statements ..
                    561: *
                    562:       INFO = 0
                    563:       NOFACT = LSAME( FACT, 'N' )
                    564:       EQUIL = LSAME( FACT, 'E' )
                    565:       SMLNUM = DLAMCH( 'Safe minimum' )
                    566:       BIGNUM = ONE / SMLNUM
                    567:       IF( NOFACT .OR. EQUIL ) THEN
                    568:          EQUED = 'N'
                    569:          RCEQU = .FALSE.
                    570:       ELSE
                    571:          RCEQU = LSAME( EQUED, 'Y' )
                    572:       ENDIF
                    573: *
                    574: *     Default is failure.  If an input parameter is wrong or
                    575: *     factorization fails, make everything look horrible.  Only the
                    576: *     pivot growth is set here, the rest is initialized in ZSYRFSX.
                    577: *
                    578:       RPVGRW = ZERO
                    579: *
                    580: *     Test the input parameters.  PARAMS is not tested until ZSYRFSX.
                    581: *
                    582:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
                    583:      $     LSAME( FACT, 'F' ) ) THEN
                    584:          INFO = -1
                    585:       ELSE IF( .NOT.LSAME(UPLO, 'U') .AND.
                    586:      $         .NOT.LSAME(UPLO, 'L') ) THEN
                    587:          INFO = -2
                    588:       ELSE IF( N.LT.0 ) THEN
                    589:          INFO = -3
                    590:       ELSE IF( NRHS.LT.0 ) THEN
                    591:          INFO = -4
                    592:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    593:          INFO = -6
                    594:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    595:          INFO = -8
                    596:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    597:      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    598:          INFO = -9
                    599:       ELSE
                    600:          IF ( RCEQU ) THEN
                    601:             SMIN = BIGNUM
                    602:             SMAX = ZERO
                    603:             DO 10 J = 1, N
                    604:                SMIN = MIN( SMIN, S( J ) )
                    605:                SMAX = MAX( SMAX, S( J ) )
                    606:  10         CONTINUE
                    607:             IF( SMIN.LE.ZERO ) THEN
                    608:                INFO = -10
                    609:             ELSE IF( N.GT.0 ) THEN
                    610:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    611:             ELSE
                    612:                SCOND = ONE
                    613:             END IF
                    614:          END IF
                    615:          IF( INFO.EQ.0 ) THEN
                    616:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    617:                INFO = -12
                    618:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    619:                INFO = -14
                    620:             END IF
                    621:          END IF
                    622:       END IF
                    623: *
                    624:       IF( INFO.NE.0 ) THEN
                    625:          CALL XERBLA( 'ZSYSVXX', -INFO )
                    626:          RETURN
                    627:       END IF
                    628: *
                    629:       IF( EQUIL ) THEN
                    630: *
                    631: *     Compute row and column scalings to equilibrate the matrix A.
                    632: *
                    633:          CALL ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFEQU )
                    634:          IF( INFEQU.EQ.0 ) THEN
                    635: *
                    636: *     Equilibrate the matrix.
                    637: *
                    638:             CALL ZLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
                    639:             RCEQU = LSAME( EQUED, 'Y' )
                    640:          END IF
                    641: 
                    642:       END IF
                    643: *
                    644: *     Scale the right hand-side.
                    645: *
                    646:       IF( RCEQU ) CALL ZLASCL2( N, NRHS, S, B, LDB )
                    647: *
                    648:       IF( NOFACT .OR. EQUIL ) THEN
                    649: *
                    650: *        Compute the LDL^T or UDU^T factorization of A.
                    651: *
                    652:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
                    653:          CALL ZSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, 5*MAX(1,N), INFO )
                    654: *
                    655: *        Return if INFO is non-zero.
                    656: *
                    657:          IF( INFO.GT.0 ) THEN
                    658: *
                    659: *           Pivot in column INFO is exactly 0
                    660: *           Compute the reciprocal pivot growth factor of the
                    661: *           leading rank-deficient INFO columns of A.
                    662: *
                    663:             IF ( N.GT.0 )
                    664:      $           RPVGRW = ZLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF,
                    665:      $           LDAF, IPIV, RWORK )
                    666:             RETURN
                    667:          END IF
                    668:       END IF
                    669: *
                    670: *     Compute the reciprocal pivot growth factor RPVGRW.
                    671: *
                    672:       IF ( N.GT.0 )
                    673:      $     RPVGRW = ZLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF,
                    674:      $     IPIV, RWORK )
                    675: *
                    676: *     Compute the solution matrix X.
                    677: *
                    678:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    679:       CALL ZSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
                    680: *
                    681: *     Use iterative refinement to improve the computed solution and
                    682: *     compute error bounds and backward error estimates for it.
                    683: *
                    684:       CALL ZSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
                    685:      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
                    686:      $     ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO )
                    687: *
                    688: *     Scale solutions.
                    689: *
                    690:       IF ( RCEQU ) THEN
                    691:          CALL ZLASCL2 (N, NRHS, S, X, LDX )
                    692:       END IF
                    693: *
                    694:       RETURN
                    695: *
                    696: *     End of ZSYSVXX
                    697: *
                    698:       END

CVSweb interface <joel.bertrand@systella.fr>