Annotation of rpl/lapack/lapack/zsysvx.f, revision 1.19

1.9       bertrand    1: *> \brief <b> ZSYSVX computes the solution to system of linear equations A * X = B for SY matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZSYSVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsysvx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsysvx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsysvx.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
                     22: *                          LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
                     23: *                          RWORK, INFO )
1.16      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          FACT, UPLO
                     27: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
                     28: *       DOUBLE PRECISION   RCOND
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IPIV( * )
                     32: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     33: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     34: *      $                   WORK( * ), X( LDX, * )
                     35: *       ..
1.16      bertrand   36: *
1.9       bertrand   37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> ZSYSVX uses the diagonal pivoting factorization to compute the
                     44: *> solution to a complex system of linear equations A * X = B,
                     45: *> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
                     46: *> matrices.
                     47: *>
                     48: *> Error bounds on the solution and a condition estimate are also
                     49: *> provided.
                     50: *> \endverbatim
                     51: *
                     52: *> \par Description:
                     53: *  =================
                     54: *>
                     55: *> \verbatim
                     56: *>
                     57: *> The following steps are performed:
                     58: *>
                     59: *> 1. If FACT = 'N', the diagonal pivoting method is used to factor A.
                     60: *>    The form of the factorization is
                     61: *>       A = U * D * U**T,  if UPLO = 'U', or
                     62: *>       A = L * D * L**T,  if UPLO = 'L',
                     63: *>    where U (or L) is a product of permutation and unit upper (lower)
                     64: *>    triangular matrices, and D is symmetric and block diagonal with
                     65: *>    1-by-1 and 2-by-2 diagonal blocks.
                     66: *>
                     67: *> 2. If some D(i,i)=0, so that D is exactly singular, then the routine
                     68: *>    returns with INFO = i. Otherwise, the factored form of A is used
                     69: *>    to estimate the condition number of the matrix A.  If the
                     70: *>    reciprocal of the condition number is less than machine precision,
                     71: *>    INFO = N+1 is returned as a warning, but the routine still goes on
                     72: *>    to solve for X and compute error bounds as described below.
                     73: *>
                     74: *> 3. The system of equations is solved for X using the factored form
                     75: *>    of A.
                     76: *>
                     77: *> 4. Iterative refinement is applied to improve the computed solution
                     78: *>    matrix and calculate error bounds and backward error estimates
                     79: *>    for it.
                     80: *> \endverbatim
                     81: *
                     82: *  Arguments:
                     83: *  ==========
                     84: *
                     85: *> \param[in] FACT
                     86: *> \verbatim
                     87: *>          FACT is CHARACTER*1
                     88: *>          Specifies whether or not the factored form of A has been
                     89: *>          supplied on entry.
                     90: *>          = 'F':  On entry, AF and IPIV contain the factored form
                     91: *>                  of A.  A, AF and IPIV will not be modified.
                     92: *>          = 'N':  The matrix A will be copied to AF and factored.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] UPLO
                     96: *> \verbatim
                     97: *>          UPLO is CHARACTER*1
                     98: *>          = 'U':  Upper triangle of A is stored;
                     99: *>          = 'L':  Lower triangle of A is stored.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] N
                    103: *> \verbatim
                    104: *>          N is INTEGER
                    105: *>          The number of linear equations, i.e., the order of the
                    106: *>          matrix A.  N >= 0.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] NRHS
                    110: *> \verbatim
                    111: *>          NRHS is INTEGER
                    112: *>          The number of right hand sides, i.e., the number of columns
                    113: *>          of the matrices B and X.  NRHS >= 0.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] A
                    117: *> \verbatim
                    118: *>          A is COMPLEX*16 array, dimension (LDA,N)
                    119: *>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
                    120: *>          upper triangular part of A contains the upper triangular part
                    121: *>          of the matrix A, and the strictly lower triangular part of A
                    122: *>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
                    123: *>          triangular part of A contains the lower triangular part of
                    124: *>          the matrix A, and the strictly upper triangular part of A is
                    125: *>          not referenced.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] LDA
                    129: *> \verbatim
                    130: *>          LDA is INTEGER
                    131: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in,out] AF
                    135: *> \verbatim
1.11      bertrand  136: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
1.9       bertrand  137: *>          If FACT = 'F', then AF is an input argument and on entry
                    138: *>          contains the block diagonal matrix D and the multipliers used
                    139: *>          to obtain the factor U or L from the factorization
                    140: *>          A = U*D*U**T or A = L*D*L**T as computed by ZSYTRF.
                    141: *>
                    142: *>          If FACT = 'N', then AF is an output argument and on exit
                    143: *>          returns the block diagonal matrix D and the multipliers used
                    144: *>          to obtain the factor U or L from the factorization
                    145: *>          A = U*D*U**T or A = L*D*L**T.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in] LDAF
                    149: *> \verbatim
                    150: *>          LDAF is INTEGER
                    151: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[in,out] IPIV
                    155: *> \verbatim
1.11      bertrand  156: *>          IPIV is INTEGER array, dimension (N)
1.9       bertrand  157: *>          If FACT = 'F', then IPIV is an input argument and on entry
                    158: *>          contains details of the interchanges and the block structure
                    159: *>          of D, as determined by ZSYTRF.
                    160: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    161: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
                    162: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                    163: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                    164: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                    165: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                    166: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    167: *>
                    168: *>          If FACT = 'N', then IPIV is an output argument and on exit
                    169: *>          contains details of the interchanges and the block structure
                    170: *>          of D, as determined by ZSYTRF.
                    171: *> \endverbatim
                    172: *>
                    173: *> \param[in] B
                    174: *> \verbatim
                    175: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    176: *>          The N-by-NRHS right hand side matrix B.
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[in] LDB
                    180: *> \verbatim
                    181: *>          LDB is INTEGER
                    182: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[out] X
                    186: *> \verbatim
                    187: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    188: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
                    189: *> \endverbatim
                    190: *>
                    191: *> \param[in] LDX
                    192: *> \verbatim
                    193: *>          LDX is INTEGER
                    194: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[out] RCOND
                    198: *> \verbatim
                    199: *>          RCOND is DOUBLE PRECISION
                    200: *>          The estimate of the reciprocal condition number of the matrix
                    201: *>          A.  If RCOND is less than the machine precision (in
                    202: *>          particular, if RCOND = 0), the matrix is singular to working
                    203: *>          precision.  This condition is indicated by a return code of
                    204: *>          INFO > 0.
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[out] FERR
                    208: *> \verbatim
                    209: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    210: *>          The estimated forward error bound for each solution vector
                    211: *>          X(j) (the j-th column of the solution matrix X).
                    212: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    213: *>          is an estimated upper bound for the magnitude of the largest
                    214: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    215: *>          largest element in X(j).  The estimate is as reliable as
                    216: *>          the estimate for RCOND, and is almost always a slight
                    217: *>          overestimate of the true error.
                    218: *> \endverbatim
                    219: *>
                    220: *> \param[out] BERR
                    221: *> \verbatim
                    222: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    223: *>          The componentwise relative backward error of each solution
                    224: *>          vector X(j) (i.e., the smallest relative change in
                    225: *>          any element of A or B that makes X(j) an exact solution).
                    226: *> \endverbatim
                    227: *>
                    228: *> \param[out] WORK
                    229: *> \verbatim
                    230: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    231: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    232: *> \endverbatim
                    233: *>
                    234: *> \param[in] LWORK
                    235: *> \verbatim
                    236: *>          LWORK is INTEGER
                    237: *>          The length of WORK.  LWORK >= max(1,2*N), and for best
                    238: *>          performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where
                    239: *>          NB is the optimal blocksize for ZSYTRF.
                    240: *>
                    241: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    242: *>          only calculates the optimal size of the WORK array, returns
                    243: *>          this value as the first entry of the WORK array, and no error
                    244: *>          message related to LWORK is issued by XERBLA.
                    245: *> \endverbatim
                    246: *>
                    247: *> \param[out] RWORK
                    248: *> \verbatim
                    249: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    250: *> \endverbatim
                    251: *>
                    252: *> \param[out] INFO
                    253: *> \verbatim
                    254: *>          INFO is INTEGER
                    255: *>          = 0: successful exit
                    256: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    257: *>          > 0: if INFO = i, and i is
                    258: *>                <= N:  D(i,i) is exactly zero.  The factorization
                    259: *>                       has been completed but the factor D is exactly
                    260: *>                       singular, so the solution and error bounds could
                    261: *>                       not be computed. RCOND = 0 is returned.
                    262: *>                = N+1: D is nonsingular, but RCOND is less than machine
                    263: *>                       precision, meaning that the matrix is singular
                    264: *>                       to working precision.  Nevertheless, the
                    265: *>                       solution and error bounds are computed because
                    266: *>                       there are a number of situations where the
                    267: *>                       computed solution can be more accurate than the
                    268: *>                       value of RCOND would suggest.
                    269: *> \endverbatim
                    270: *
                    271: *  Authors:
                    272: *  ========
                    273: *
1.16      bertrand  274: *> \author Univ. of Tennessee
                    275: *> \author Univ. of California Berkeley
                    276: *> \author Univ. of Colorado Denver
                    277: *> \author NAG Ltd.
1.9       bertrand  278: *
                    279: *> \ingroup complex16SYsolve
                    280: *
                    281: *  =====================================================================
1.1       bertrand  282:       SUBROUTINE ZSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
                    283:      $                   LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
                    284:      $                   RWORK, INFO )
                    285: *
1.19    ! bertrand  286: *  -- LAPACK driver routine --
1.1       bertrand  287: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    288: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    289: *
                    290: *     .. Scalar Arguments ..
                    291:       CHARACTER          FACT, UPLO
                    292:       INTEGER            INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
                    293:       DOUBLE PRECISION   RCOND
                    294: *     ..
                    295: *     .. Array Arguments ..
                    296:       INTEGER            IPIV( * )
                    297:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    298:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    299:      $                   WORK( * ), X( LDX, * )
                    300: *     ..
                    301: *
                    302: *  =====================================================================
                    303: *
                    304: *     .. Parameters ..
                    305:       DOUBLE PRECISION   ZERO
                    306:       PARAMETER          ( ZERO = 0.0D+0 )
                    307: *     ..
                    308: *     .. Local Scalars ..
                    309:       LOGICAL            LQUERY, NOFACT
                    310:       INTEGER            LWKOPT, NB
                    311:       DOUBLE PRECISION   ANORM
                    312: *     ..
                    313: *     .. External Functions ..
                    314:       LOGICAL            LSAME
                    315:       INTEGER            ILAENV
                    316:       DOUBLE PRECISION   DLAMCH, ZLANSY
                    317:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANSY
                    318: *     ..
                    319: *     .. External Subroutines ..
                    320:       EXTERNAL           XERBLA, ZLACPY, ZSYCON, ZSYRFS, ZSYTRF, ZSYTRS
                    321: *     ..
                    322: *     .. Intrinsic Functions ..
                    323:       INTRINSIC          MAX
                    324: *     ..
                    325: *     .. Executable Statements ..
                    326: *
                    327: *     Test the input parameters.
                    328: *
                    329:       INFO = 0
                    330:       NOFACT = LSAME( FACT, 'N' )
                    331:       LQUERY = ( LWORK.EQ.-1 )
                    332:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
                    333:          INFO = -1
                    334:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
                    335:      $          THEN
                    336:          INFO = -2
                    337:       ELSE IF( N.LT.0 ) THEN
                    338:          INFO = -3
                    339:       ELSE IF( NRHS.LT.0 ) THEN
                    340:          INFO = -4
                    341:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    342:          INFO = -6
                    343:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    344:          INFO = -8
                    345:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    346:          INFO = -11
                    347:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    348:          INFO = -13
                    349:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
                    350:          INFO = -18
                    351:       END IF
                    352: *
                    353:       IF( INFO.EQ.0 ) THEN
                    354:          LWKOPT = MAX( 1, 2*N )
                    355:          IF( NOFACT ) THEN
                    356:             NB = ILAENV( 1, 'ZSYTRF', UPLO, N, -1, -1, -1 )
                    357:             LWKOPT = MAX( LWKOPT, N*NB )
                    358:          END IF
                    359:          WORK( 1 ) = LWKOPT
                    360:       END IF
                    361: *
                    362:       IF( INFO.NE.0 ) THEN
                    363:          CALL XERBLA( 'ZSYSVX', -INFO )
                    364:          RETURN
                    365:       ELSE IF( LQUERY ) THEN
                    366:          RETURN
                    367:       END IF
                    368: *
                    369:       IF( NOFACT ) THEN
                    370: *
1.8       bertrand  371: *        Compute the factorization A = U*D*U**T or A = L*D*L**T.
1.1       bertrand  372: *
                    373:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
                    374:          CALL ZSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, LWORK, INFO )
                    375: *
                    376: *        Return if INFO is non-zero.
                    377: *
                    378:          IF( INFO.GT.0 )THEN
                    379:             RCOND = ZERO
                    380:             RETURN
                    381:          END IF
                    382:       END IF
                    383: *
                    384: *     Compute the norm of the matrix A.
                    385: *
                    386:       ANORM = ZLANSY( 'I', UPLO, N, A, LDA, RWORK )
                    387: *
                    388: *     Compute the reciprocal of the condition number of A.
                    389: *
                    390:       CALL ZSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK, INFO )
                    391: *
                    392: *     Compute the solution vectors X.
                    393: *
                    394:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    395:       CALL ZSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
                    396: *
                    397: *     Use iterative refinement to improve the computed solutions and
                    398: *     compute error bounds and backward error estimates for them.
                    399: *
                    400:       CALL ZSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
                    401:      $             LDX, FERR, BERR, WORK, RWORK, INFO )
                    402: *
                    403: *     Set INFO = N+1 if the matrix is singular to working precision.
                    404: *
                    405:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    406:      $   INFO = N + 1
                    407: *
                    408:       WORK( 1 ) = LWKOPT
                    409: *
                    410:       RETURN
                    411: *
                    412: *     End of ZSYSVX
                    413: *
                    414:       END

CVSweb interface <joel.bertrand@systella.fr>