Annotation of rpl/lapack/lapack/zsysvx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
        !             2:      $                   LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
        !             3:      $                   RWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          FACT, UPLO
        !            12:       INTEGER            INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
        !            13:       DOUBLE PRECISION   RCOND
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            IPIV( * )
        !            17:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
        !            18:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
        !            19:      $                   WORK( * ), X( LDX, * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  ZSYSVX uses the diagonal pivoting factorization to compute the
        !            26: *  solution to a complex system of linear equations A * X = B,
        !            27: *  where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
        !            28: *  matrices.
        !            29: *
        !            30: *  Error bounds on the solution and a condition estimate are also
        !            31: *  provided.
        !            32: *
        !            33: *  Description
        !            34: *  ===========
        !            35: *
        !            36: *  The following steps are performed:
        !            37: *
        !            38: *  1. If FACT = 'N', the diagonal pivoting method is used to factor A.
        !            39: *     The form of the factorization is
        !            40: *        A = U * D * U**T,  if UPLO = 'U', or
        !            41: *        A = L * D * L**T,  if UPLO = 'L',
        !            42: *     where U (or L) is a product of permutation and unit upper (lower)
        !            43: *     triangular matrices, and D is symmetric and block diagonal with
        !            44: *     1-by-1 and 2-by-2 diagonal blocks.
        !            45: *
        !            46: *  2. If some D(i,i)=0, so that D is exactly singular, then the routine
        !            47: *     returns with INFO = i. Otherwise, the factored form of A is used
        !            48: *     to estimate the condition number of the matrix A.  If the
        !            49: *     reciprocal of the condition number is less than machine precision,
        !            50: *     INFO = N+1 is returned as a warning, but the routine still goes on
        !            51: *     to solve for X and compute error bounds as described below.
        !            52: *
        !            53: *  3. The system of equations is solved for X using the factored form
        !            54: *     of A.
        !            55: *
        !            56: *  4. Iterative refinement is applied to improve the computed solution
        !            57: *     matrix and calculate error bounds and backward error estimates
        !            58: *     for it.
        !            59: *
        !            60: *  Arguments
        !            61: *  =========
        !            62: *
        !            63: *  FACT    (input) CHARACTER*1
        !            64: *          Specifies whether or not the factored form of A has been
        !            65: *          supplied on entry.
        !            66: *          = 'F':  On entry, AF and IPIV contain the factored form
        !            67: *                  of A.  A, AF and IPIV will not be modified.
        !            68: *          = 'N':  The matrix A will be copied to AF and factored.
        !            69: *
        !            70: *  UPLO    (input) CHARACTER*1
        !            71: *          = 'U':  Upper triangle of A is stored;
        !            72: *          = 'L':  Lower triangle of A is stored.
        !            73: *
        !            74: *  N       (input) INTEGER
        !            75: *          The number of linear equations, i.e., the order of the
        !            76: *          matrix A.  N >= 0.
        !            77: *
        !            78: *  NRHS    (input) INTEGER
        !            79: *          The number of right hand sides, i.e., the number of columns
        !            80: *          of the matrices B and X.  NRHS >= 0.
        !            81: *
        !            82: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
        !            83: *          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
        !            84: *          upper triangular part of A contains the upper triangular part
        !            85: *          of the matrix A, and the strictly lower triangular part of A
        !            86: *          is not referenced.  If UPLO = 'L', the leading N-by-N lower
        !            87: *          triangular part of A contains the lower triangular part of
        !            88: *          the matrix A, and the strictly upper triangular part of A is
        !            89: *          not referenced.
        !            90: *
        !            91: *  LDA     (input) INTEGER
        !            92: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            93: *
        !            94: *  AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)
        !            95: *          If FACT = 'F', then AF is an input argument and on entry
        !            96: *          contains the block diagonal matrix D and the multipliers used
        !            97: *          to obtain the factor U or L from the factorization
        !            98: *          A = U*D*U**T or A = L*D*L**T as computed by ZSYTRF.
        !            99: *
        !           100: *          If FACT = 'N', then AF is an output argument and on exit
        !           101: *          returns the block diagonal matrix D and the multipliers used
        !           102: *          to obtain the factor U or L from the factorization
        !           103: *          A = U*D*U**T or A = L*D*L**T.
        !           104: *
        !           105: *  LDAF    (input) INTEGER
        !           106: *          The leading dimension of the array AF.  LDAF >= max(1,N).
        !           107: *
        !           108: *  IPIV    (input or output) INTEGER array, dimension (N)
        !           109: *          If FACT = 'F', then IPIV is an input argument and on entry
        !           110: *          contains details of the interchanges and the block structure
        !           111: *          of D, as determined by ZSYTRF.
        !           112: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
        !           113: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
        !           114: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
        !           115: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
        !           116: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
        !           117: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
        !           118: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
        !           119: *
        !           120: *          If FACT = 'N', then IPIV is an output argument and on exit
        !           121: *          contains details of the interchanges and the block structure
        !           122: *          of D, as determined by ZSYTRF.
        !           123: *
        !           124: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
        !           125: *          The N-by-NRHS right hand side matrix B.
        !           126: *
        !           127: *  LDB     (input) INTEGER
        !           128: *          The leading dimension of the array B.  LDB >= max(1,N).
        !           129: *
        !           130: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
        !           131: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
        !           132: *
        !           133: *  LDX     (input) INTEGER
        !           134: *          The leading dimension of the array X.  LDX >= max(1,N).
        !           135: *
        !           136: *  RCOND   (output) DOUBLE PRECISION
        !           137: *          The estimate of the reciprocal condition number of the matrix
        !           138: *          A.  If RCOND is less than the machine precision (in
        !           139: *          particular, if RCOND = 0), the matrix is singular to working
        !           140: *          precision.  This condition is indicated by a return code of
        !           141: *          INFO > 0.
        !           142: *
        !           143: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           144: *          The estimated forward error bound for each solution vector
        !           145: *          X(j) (the j-th column of the solution matrix X).
        !           146: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           147: *          is an estimated upper bound for the magnitude of the largest
        !           148: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !           149: *          largest element in X(j).  The estimate is as reliable as
        !           150: *          the estimate for RCOND, and is almost always a slight
        !           151: *          overestimate of the true error.
        !           152: *
        !           153: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           154: *          The componentwise relative backward error of each solution
        !           155: *          vector X(j) (i.e., the smallest relative change in
        !           156: *          any element of A or B that makes X(j) an exact solution).
        !           157: *
        !           158: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           159: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           160: *
        !           161: *  LWORK   (input) INTEGER
        !           162: *          The length of WORK.  LWORK >= max(1,2*N), and for best
        !           163: *          performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where
        !           164: *          NB is the optimal blocksize for ZSYTRF.
        !           165: *
        !           166: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           167: *          only calculates the optimal size of the WORK array, returns
        !           168: *          this value as the first entry of the WORK array, and no error
        !           169: *          message related to LWORK is issued by XERBLA.
        !           170: *
        !           171: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
        !           172: *
        !           173: *  INFO    (output) INTEGER
        !           174: *          = 0: successful exit
        !           175: *          < 0: if INFO = -i, the i-th argument had an illegal value
        !           176: *          > 0: if INFO = i, and i is
        !           177: *                <= N:  D(i,i) is exactly zero.  The factorization
        !           178: *                       has been completed but the factor D is exactly
        !           179: *                       singular, so the solution and error bounds could
        !           180: *                       not be computed. RCOND = 0 is returned.
        !           181: *                = N+1: D is nonsingular, but RCOND is less than machine
        !           182: *                       precision, meaning that the matrix is singular
        !           183: *                       to working precision.  Nevertheless, the
        !           184: *                       solution and error bounds are computed because
        !           185: *                       there are a number of situations where the
        !           186: *                       computed solution can be more accurate than the
        !           187: *                       value of RCOND would suggest.
        !           188: *
        !           189: *  =====================================================================
        !           190: *
        !           191: *     .. Parameters ..
        !           192:       DOUBLE PRECISION   ZERO
        !           193:       PARAMETER          ( ZERO = 0.0D+0 )
        !           194: *     ..
        !           195: *     .. Local Scalars ..
        !           196:       LOGICAL            LQUERY, NOFACT
        !           197:       INTEGER            LWKOPT, NB
        !           198:       DOUBLE PRECISION   ANORM
        !           199: *     ..
        !           200: *     .. External Functions ..
        !           201:       LOGICAL            LSAME
        !           202:       INTEGER            ILAENV
        !           203:       DOUBLE PRECISION   DLAMCH, ZLANSY
        !           204:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANSY
        !           205: *     ..
        !           206: *     .. External Subroutines ..
        !           207:       EXTERNAL           XERBLA, ZLACPY, ZSYCON, ZSYRFS, ZSYTRF, ZSYTRS
        !           208: *     ..
        !           209: *     .. Intrinsic Functions ..
        !           210:       INTRINSIC          MAX
        !           211: *     ..
        !           212: *     .. Executable Statements ..
        !           213: *
        !           214: *     Test the input parameters.
        !           215: *
        !           216:       INFO = 0
        !           217:       NOFACT = LSAME( FACT, 'N' )
        !           218:       LQUERY = ( LWORK.EQ.-1 )
        !           219:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
        !           220:          INFO = -1
        !           221:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
        !           222:      $          THEN
        !           223:          INFO = -2
        !           224:       ELSE IF( N.LT.0 ) THEN
        !           225:          INFO = -3
        !           226:       ELSE IF( NRHS.LT.0 ) THEN
        !           227:          INFO = -4
        !           228:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           229:          INFO = -6
        !           230:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
        !           231:          INFO = -8
        !           232:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           233:          INFO = -11
        !           234:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           235:          INFO = -13
        !           236:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
        !           237:          INFO = -18
        !           238:       END IF
        !           239: *
        !           240:       IF( INFO.EQ.0 ) THEN
        !           241:          LWKOPT = MAX( 1, 2*N )
        !           242:          IF( NOFACT ) THEN
        !           243:             NB = ILAENV( 1, 'ZSYTRF', UPLO, N, -1, -1, -1 )
        !           244:             LWKOPT = MAX( LWKOPT, N*NB )
        !           245:          END IF
        !           246:          WORK( 1 ) = LWKOPT
        !           247:       END IF
        !           248: *
        !           249:       IF( INFO.NE.0 ) THEN
        !           250:          CALL XERBLA( 'ZSYSVX', -INFO )
        !           251:          RETURN
        !           252:       ELSE IF( LQUERY ) THEN
        !           253:          RETURN
        !           254:       END IF
        !           255: *
        !           256:       IF( NOFACT ) THEN
        !           257: *
        !           258: *        Compute the factorization A = U*D*U' or A = L*D*L'.
        !           259: *
        !           260:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
        !           261:          CALL ZSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, LWORK, INFO )
        !           262: *
        !           263: *        Return if INFO is non-zero.
        !           264: *
        !           265:          IF( INFO.GT.0 )THEN
        !           266:             RCOND = ZERO
        !           267:             RETURN
        !           268:          END IF
        !           269:       END IF
        !           270: *
        !           271: *     Compute the norm of the matrix A.
        !           272: *
        !           273:       ANORM = ZLANSY( 'I', UPLO, N, A, LDA, RWORK )
        !           274: *
        !           275: *     Compute the reciprocal of the condition number of A.
        !           276: *
        !           277:       CALL ZSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK, INFO )
        !           278: *
        !           279: *     Compute the solution vectors X.
        !           280: *
        !           281:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
        !           282:       CALL ZSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
        !           283: *
        !           284: *     Use iterative refinement to improve the computed solutions and
        !           285: *     compute error bounds and backward error estimates for them.
        !           286: *
        !           287:       CALL ZSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
        !           288:      $             LDX, FERR, BERR, WORK, RWORK, INFO )
        !           289: *
        !           290: *     Set INFO = N+1 if the matrix is singular to working precision.
        !           291: *
        !           292:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
        !           293:      $   INFO = N + 1
        !           294: *
        !           295:       WORK( 1 ) = LWKOPT
        !           296: *
        !           297:       RETURN
        !           298: *
        !           299: *     End of ZSYSVX
        !           300: *
        !           301:       END

CVSweb interface <joel.bertrand@systella.fr>