File:  [local] / rpl / lapack / lapack / zsyrfsx.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:38 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSYRFSX
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYRFSX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyrfsx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyrfsx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyrfsx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
   22: *                           S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
   23: *                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
   24: *                           WORK, RWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          UPLO, EQUED
   28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   29: *      $                   N_ERR_BNDS
   30: *       DOUBLE PRECISION   RCOND
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       INTEGER            IPIV( * )
   34: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   35: *      $                   X( LDX, * ), WORK( * )
   36: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
   37: *      $                   ERR_BNDS_NORM( NRHS, * ),
   38: *      $                   ERR_BNDS_COMP( NRHS, * )
   39: *       ..
   40: *
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *>    ZSYRFSX improves the computed solution to a system of linear
   48: *>    equations when the coefficient matrix is symmetric indefinite, and
   49: *>    provides error bounds and backward error estimates for the
   50: *>    solution.  In addition to normwise error bound, the code provides
   51: *>    maximum componentwise error bound if possible.  See comments for
   52: *>    ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds.
   53: *>
   54: *>    The original system of linear equations may have been equilibrated
   55: *>    before calling this routine, as described by arguments EQUED and S
   56: *>    below. In this case, the solution and error bounds returned are
   57: *>    for the original unequilibrated system.
   58: *> \endverbatim
   59: *
   60: *  Arguments:
   61: *  ==========
   62: *
   63: *> \verbatim
   64: *>     Some optional parameters are bundled in the PARAMS array.  These
   65: *>     settings determine how refinement is performed, but often the
   66: *>     defaults are acceptable.  If the defaults are acceptable, users
   67: *>     can pass NPARAMS = 0 which prevents the source code from accessing
   68: *>     the PARAMS argument.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] UPLO
   72: *> \verbatim
   73: *>          UPLO is CHARACTER*1
   74: *>       = 'U':  Upper triangle of A is stored;
   75: *>       = 'L':  Lower triangle of A is stored.
   76: *> \endverbatim
   77: *>
   78: *> \param[in] EQUED
   79: *> \verbatim
   80: *>          EQUED is CHARACTER*1
   81: *>     Specifies the form of equilibration that was done to A
   82: *>     before calling this routine. This is needed to compute
   83: *>     the solution and error bounds correctly.
   84: *>       = 'N':  No equilibration
   85: *>       = 'Y':  Both row and column equilibration, i.e., A has been
   86: *>               replaced by diag(S) * A * diag(S).
   87: *>               The right hand side B has been changed accordingly.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] N
   91: *> \verbatim
   92: *>          N is INTEGER
   93: *>     The order of the matrix A.  N >= 0.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] NRHS
   97: *> \verbatim
   98: *>          NRHS is INTEGER
   99: *>     The number of right hand sides, i.e., the number of columns
  100: *>     of the matrices B and X.  NRHS >= 0.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] A
  104: *> \verbatim
  105: *>          A is COMPLEX*16 array, dimension (LDA,N)
  106: *>     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
  107: *>     upper triangular part of A contains the upper triangular
  108: *>     part of the matrix A, and the strictly lower triangular
  109: *>     part of A is not referenced.  If UPLO = 'L', the leading
  110: *>     N-by-N lower triangular part of A contains the lower
  111: *>     triangular part of the matrix A, and the strictly upper
  112: *>     triangular part of A is not referenced.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDA
  116: *> \verbatim
  117: *>          LDA is INTEGER
  118: *>     The leading dimension of the array A.  LDA >= max(1,N).
  119: *> \endverbatim
  120: *>
  121: *> \param[in] AF
  122: *> \verbatim
  123: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
  124: *>     The factored form of the matrix A.  AF contains the block
  125: *>     diagonal matrix D and the multipliers used to obtain the
  126: *>     factor U or L from the factorization A = U*D*U**T or A =
  127: *>     L*D*L**T as computed by ZSYTRF.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] LDAF
  131: *> \verbatim
  132: *>          LDAF is INTEGER
  133: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  134: *> \endverbatim
  135: *>
  136: *> \param[in] IPIV
  137: *> \verbatim
  138: *>          IPIV is INTEGER array, dimension (N)
  139: *>     Details of the interchanges and the block structure of D
  140: *>     as determined by ZSYTRF.
  141: *> \endverbatim
  142: *>
  143: *> \param[in,out] S
  144: *> \verbatim
  145: *>          S is DOUBLE PRECISION array, dimension (N)
  146: *>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
  147: *>     the left and right by diag(S).  S is an input argument if FACT =
  148: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
  149: *>     = 'Y', each element of S must be positive.  If S is output, each
  150: *>     element of S is a power of the radix. If S is input, each element
  151: *>     of S should be a power of the radix to ensure a reliable solution
  152: *>     and error estimates. Scaling by powers of the radix does not cause
  153: *>     rounding errors unless the result underflows or overflows.
  154: *>     Rounding errors during scaling lead to refining with a matrix that
  155: *>     is not equivalent to the input matrix, producing error estimates
  156: *>     that may not be reliable.
  157: *> \endverbatim
  158: *>
  159: *> \param[in] B
  160: *> \verbatim
  161: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  162: *>     The right hand side matrix B.
  163: *> \endverbatim
  164: *>
  165: *> \param[in] LDB
  166: *> \verbatim
  167: *>          LDB is INTEGER
  168: *>     The leading dimension of the array B.  LDB >= max(1,N).
  169: *> \endverbatim
  170: *>
  171: *> \param[in,out] X
  172: *> \verbatim
  173: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  174: *>     On entry, the solution matrix X, as computed by ZGETRS.
  175: *>     On exit, the improved solution matrix X.
  176: *> \endverbatim
  177: *>
  178: *> \param[in] LDX
  179: *> \verbatim
  180: *>          LDX is INTEGER
  181: *>     The leading dimension of the array X.  LDX >= max(1,N).
  182: *> \endverbatim
  183: *>
  184: *> \param[out] RCOND
  185: *> \verbatim
  186: *>          RCOND is DOUBLE PRECISION
  187: *>     Reciprocal scaled condition number.  This is an estimate of the
  188: *>     reciprocal Skeel condition number of the matrix A after
  189: *>     equilibration (if done).  If this is less than the machine
  190: *>     precision (in particular, if it is zero), the matrix is singular
  191: *>     to working precision.  Note that the error may still be small even
  192: *>     if this number is very small and the matrix appears ill-
  193: *>     conditioned.
  194: *> \endverbatim
  195: *>
  196: *> \param[out] BERR
  197: *> \verbatim
  198: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  199: *>     Componentwise relative backward error.  This is the
  200: *>     componentwise relative backward error of each solution vector X(j)
  201: *>     (i.e., the smallest relative change in any element of A or B that
  202: *>     makes X(j) an exact solution).
  203: *> \endverbatim
  204: *>
  205: *> \param[in] N_ERR_BNDS
  206: *> \verbatim
  207: *>          N_ERR_BNDS is INTEGER
  208: *>     Number of error bounds to return for each right hand side
  209: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  210: *>     ERR_BNDS_COMP below.
  211: *> \endverbatim
  212: *>
  213: *> \param[out] ERR_BNDS_NORM
  214: *> \verbatim
  215: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  216: *>     For each right-hand side, this array contains information about
  217: *>     various error bounds and condition numbers corresponding to the
  218: *>     normwise relative error, which is defined as follows:
  219: *>
  220: *>     Normwise relative error in the ith solution vector:
  221: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  222: *>            ------------------------------
  223: *>                  max_j abs(X(j,i))
  224: *>
  225: *>     The array is indexed by the type of error information as described
  226: *>     below. There currently are up to three pieces of information
  227: *>     returned.
  228: *>
  229: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  230: *>     right-hand side.
  231: *>
  232: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  233: *>     three fields:
  234: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  235: *>              reciprocal condition number is less than the threshold
  236: *>              sqrt(n) * dlamch('Epsilon').
  237: *>
  238: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  239: *>              almost certainly within a factor of 10 of the true error
  240: *>              so long as the next entry is greater than the threshold
  241: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  242: *>              be trusted if the previous boolean is true.
  243: *>
  244: *>     err = 3  Reciprocal condition number: Estimated normwise
  245: *>              reciprocal condition number.  Compared with the threshold
  246: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  247: *>              estimate is "guaranteed". These reciprocal condition
  248: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  249: *>              appropriately scaled matrix Z.
  250: *>              Let Z = S*A, where S scales each row by a power of the
  251: *>              radix so all absolute row sums of Z are approximately 1.
  252: *>
  253: *>     See Lapack Working Note 165 for further details and extra
  254: *>     cautions.
  255: *> \endverbatim
  256: *>
  257: *> \param[out] ERR_BNDS_COMP
  258: *> \verbatim
  259: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  260: *>     For each right-hand side, this array contains information about
  261: *>     various error bounds and condition numbers corresponding to the
  262: *>     componentwise relative error, which is defined as follows:
  263: *>
  264: *>     Componentwise relative error in the ith solution vector:
  265: *>                    abs(XTRUE(j,i) - X(j,i))
  266: *>             max_j ----------------------
  267: *>                         abs(X(j,i))
  268: *>
  269: *>     The array is indexed by the right-hand side i (on which the
  270: *>     componentwise relative error depends), and the type of error
  271: *>     information as described below. There currently are up to three
  272: *>     pieces of information returned for each right-hand side. If
  273: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  274: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
  275: *>     the first (:,N_ERR_BNDS) entries are returned.
  276: *>
  277: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  278: *>     right-hand side.
  279: *>
  280: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  281: *>     three fields:
  282: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  283: *>              reciprocal condition number is less than the threshold
  284: *>              sqrt(n) * dlamch('Epsilon').
  285: *>
  286: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  287: *>              almost certainly within a factor of 10 of the true error
  288: *>              so long as the next entry is greater than the threshold
  289: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  290: *>              be trusted if the previous boolean is true.
  291: *>
  292: *>     err = 3  Reciprocal condition number: Estimated componentwise
  293: *>              reciprocal condition number.  Compared with the threshold
  294: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  295: *>              estimate is "guaranteed". These reciprocal condition
  296: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  297: *>              appropriately scaled matrix Z.
  298: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  299: *>              current right-hand side and S scales each row of
  300: *>              A*diag(x) by a power of the radix so all absolute row
  301: *>              sums of Z are approximately 1.
  302: *>
  303: *>     See Lapack Working Note 165 for further details and extra
  304: *>     cautions.
  305: *> \endverbatim
  306: *>
  307: *> \param[in] NPARAMS
  308: *> \verbatim
  309: *>          NPARAMS is INTEGER
  310: *>     Specifies the number of parameters set in PARAMS.  If <= 0, the
  311: *>     PARAMS array is never referenced and default values are used.
  312: *> \endverbatim
  313: *>
  314: *> \param[in,out] PARAMS
  315: *> \verbatim
  316: *>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
  317: *>     Specifies algorithm parameters.  If an entry is < 0.0, then
  318: *>     that entry will be filled with default value used for that
  319: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
  320: *>     are used for higher-numbered parameters.
  321: *>
  322: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  323: *>            refinement or not.
  324: *>         Default: 1.0D+0
  325: *>            = 0.0:  No refinement is performed, and no error bounds are
  326: *>                    computed.
  327: *>            = 1.0:  Use the double-precision refinement algorithm,
  328: *>                    possibly with doubled-single computations if the
  329: *>                    compilation environment does not support DOUBLE
  330: *>                    PRECISION.
  331: *>              (other values are reserved for future use)
  332: *>
  333: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  334: *>            computations allowed for refinement.
  335: *>         Default: 10
  336: *>         Aggressive: Set to 100 to permit convergence using approximate
  337: *>                     factorizations or factorizations other than LU. If
  338: *>                     the factorization uses a technique other than
  339: *>                     Gaussian elimination, the guarantees in
  340: *>                     err_bnds_norm and err_bnds_comp may no longer be
  341: *>                     trustworthy.
  342: *>
  343: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  344: *>            will attempt to find a solution with small componentwise
  345: *>            relative error in the double-precision algorithm.  Positive
  346: *>            is true, 0.0 is false.
  347: *>         Default: 1.0 (attempt componentwise convergence)
  348: *> \endverbatim
  349: *>
  350: *> \param[out] WORK
  351: *> \verbatim
  352: *>          WORK is COMPLEX*16 array, dimension (2*N)
  353: *> \endverbatim
  354: *>
  355: *> \param[out] RWORK
  356: *> \verbatim
  357: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  358: *> \endverbatim
  359: *>
  360: *> \param[out] INFO
  361: *> \verbatim
  362: *>          INFO is INTEGER
  363: *>       = 0:  Successful exit. The solution to every right-hand side is
  364: *>         guaranteed.
  365: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
  366: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  367: *>         has been completed, but the factor U is exactly singular, so
  368: *>         the solution and error bounds could not be computed. RCOND = 0
  369: *>         is returned.
  370: *>       = N+J: The solution corresponding to the Jth right-hand side is
  371: *>         not guaranteed. The solutions corresponding to other right-
  372: *>         hand sides K with K > J may not be guaranteed as well, but
  373: *>         only the first such right-hand side is reported. If a small
  374: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
  375: *>         the Jth right-hand side is the first with a normwise error
  376: *>         bound that is not guaranteed (the smallest J such
  377: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  378: *>         the Jth right-hand side is the first with either a normwise or
  379: *>         componentwise error bound that is not guaranteed (the smallest
  380: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  381: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  382: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  383: *>         about all of the right-hand sides check ERR_BNDS_NORM or
  384: *>         ERR_BNDS_COMP.
  385: *> \endverbatim
  386: *
  387: *  Authors:
  388: *  ========
  389: *
  390: *> \author Univ. of Tennessee
  391: *> \author Univ. of California Berkeley
  392: *> \author Univ. of Colorado Denver
  393: *> \author NAG Ltd.
  394: *
  395: *> \ingroup complex16SYcomputational
  396: *
  397: *  =====================================================================
  398:       SUBROUTINE ZSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
  399:      $                    S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
  400:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  401:      $                    WORK, RWORK, INFO )
  402: *
  403: *  -- LAPACK computational routine --
  404: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  405: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  406: *
  407: *     .. Scalar Arguments ..
  408:       CHARACTER          UPLO, EQUED
  409:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  410:      $                   N_ERR_BNDS
  411:       DOUBLE PRECISION   RCOND
  412: *     ..
  413: *     .. Array Arguments ..
  414:       INTEGER            IPIV( * )
  415:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  416:      $                   X( LDX, * ), WORK( * )
  417:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
  418:      $                   ERR_BNDS_NORM( NRHS, * ),
  419:      $                   ERR_BNDS_COMP( NRHS, * )
  420: *     ..
  421: *
  422: *  ==================================================================
  423: *
  424: *     .. Parameters ..
  425:       DOUBLE PRECISION   ZERO, ONE
  426:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  427:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
  428:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
  429:       DOUBLE PRECISION   DZTHRESH_DEFAULT
  430:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
  431:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
  432:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
  433:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
  434:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
  435:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  436:      $                   LA_LINRX_CWISE_I
  437:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  438:      $                   LA_LINRX_ITHRESH_I = 2 )
  439:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  440:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  441:      $                   LA_LINRX_RCOND_I
  442:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  443:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  444: *     ..
  445: *     .. Local Scalars ..
  446:       CHARACTER(1)       NORM
  447:       LOGICAL            RCEQU
  448:       INTEGER            J, PREC_TYPE, REF_TYPE
  449:       INTEGER            N_NORMS
  450:       DOUBLE PRECISION   ANORM, RCOND_TMP
  451:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
  452:       LOGICAL            IGNORE_CWISE
  453:       INTEGER            ITHRESH
  454:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
  455: *     ..
  456: *     .. External Subroutines ..
  457:       EXTERNAL           XERBLA, ZSYCON, ZLA_SYRFSX_EXTENDED
  458: *     ..
  459: *     .. Intrinsic Functions ..
  460:       INTRINSIC          MAX, SQRT, TRANSFER
  461: *     ..
  462: *     .. External Functions ..
  463:       EXTERNAL           LSAME, ILAPREC
  464:       EXTERNAL           DLAMCH, ZLANSY, ZLA_SYRCOND_X, ZLA_SYRCOND_C
  465:       DOUBLE PRECISION   DLAMCH, ZLANSY, ZLA_SYRCOND_X, ZLA_SYRCOND_C
  466:       LOGICAL            LSAME
  467:       INTEGER            ILAPREC
  468: *     ..
  469: *     .. Executable Statements ..
  470: *
  471: *     Check the input parameters.
  472: *
  473:       INFO = 0
  474:       REF_TYPE = INT( ITREF_DEFAULT )
  475:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
  476:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
  477:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
  478:          ELSE
  479:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
  480:          END IF
  481:       END IF
  482: *
  483: *     Set default parameters.
  484: *
  485:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
  486:       ITHRESH = INT( ITHRESH_DEFAULT )
  487:       RTHRESH = RTHRESH_DEFAULT
  488:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
  489:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
  490: *
  491:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
  492:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
  493:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
  494:          ELSE
  495:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
  496:          END IF
  497:       END IF
  498:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
  499:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
  500:             IF ( IGNORE_CWISE ) THEN
  501:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
  502:             ELSE
  503:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
  504:             END IF
  505:          ELSE
  506:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
  507:          END IF
  508:       END IF
  509:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
  510:          N_NORMS = 0
  511:       ELSE IF ( IGNORE_CWISE ) THEN
  512:          N_NORMS = 1
  513:       ELSE
  514:          N_NORMS = 2
  515:       END IF
  516: *
  517:       RCEQU = LSAME( EQUED, 'Y' )
  518: *
  519: *     Test input parameters.
  520: *
  521:       IF ( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  522:         INFO = -1
  523:       ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
  524:         INFO = -2
  525:       ELSE IF( N.LT.0 ) THEN
  526:         INFO = -3
  527:       ELSE IF( NRHS.LT.0 ) THEN
  528:         INFO = -4
  529:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  530:         INFO = -6
  531:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  532:         INFO = -8
  533:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  534:         INFO = -12
  535:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  536:         INFO = -14
  537:       END IF
  538:       IF( INFO.NE.0 ) THEN
  539:         CALL XERBLA( 'ZSYRFSX', -INFO )
  540:         RETURN
  541:       END IF
  542: *
  543: *     Quick return if possible.
  544: *
  545:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  546:          RCOND = 1.0D+0
  547:          DO J = 1, NRHS
  548:             BERR( J ) = 0.0D+0
  549:             IF ( N_ERR_BNDS .GE. 1 ) THEN
  550:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  551:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  552:             END IF
  553:             IF ( N_ERR_BNDS .GE. 2 ) THEN
  554:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
  555:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
  556:             END IF
  557:             IF ( N_ERR_BNDS .GE. 3 ) THEN
  558:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
  559:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
  560:             END IF
  561:          END DO
  562:          RETURN
  563:       END IF
  564: *
  565: *     Default to failure.
  566: *
  567:       RCOND = 0.0D+0
  568:       DO J = 1, NRHS
  569:          BERR( J ) = 1.0D+0
  570:          IF ( N_ERR_BNDS .GE. 1 ) THEN
  571:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  572:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  573:          END IF
  574:          IF ( N_ERR_BNDS .GE. 2 ) THEN
  575:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  576:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  577:          END IF
  578:          IF ( N_ERR_BNDS .GE. 3 ) THEN
  579:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
  580:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
  581:          END IF
  582:       END DO
  583: *
  584: *     Compute the norm of A and the reciprocal of the condition
  585: *     number of A.
  586: *
  587:       NORM = 'I'
  588:       ANORM = ZLANSY( NORM, UPLO, N, A, LDA, RWORK )
  589:       CALL ZSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK,
  590:      $     INFO )
  591: *
  592: *     Perform refinement on each right-hand side
  593: *
  594:       IF ( REF_TYPE .NE. 0 ) THEN
  595: 
  596:          PREC_TYPE = ILAPREC( 'E' )
  597: 
  598:          CALL ZLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO,  N,
  599:      $        NRHS, A, LDA, AF, LDAF, IPIV, RCEQU, S, B,
  600:      $        LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  601:      $        WORK, RWORK, WORK(N+1),
  602:      $        TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N), RCOND,
  603:      $        ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
  604:      $        INFO )
  605:       END IF
  606: 
  607:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
  608:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
  609: *
  610: *     Compute scaled normwise condition number cond(A*C).
  611: *
  612:          IF ( RCEQU ) THEN
  613:             RCOND_TMP = ZLA_SYRCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV,
  614:      $           S, .TRUE., INFO, WORK, RWORK )
  615:          ELSE
  616:             RCOND_TMP = ZLA_SYRCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV,
  617:      $           S, .FALSE., INFO, WORK, RWORK )
  618:          END IF
  619:          DO J = 1, NRHS
  620: *
  621: *     Cap the error at 1.0.
  622: *
  623:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  624:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  625:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  626: *
  627: *     Threshold the error (see LAWN).
  628: *
  629:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  630:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  631:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
  632:                IF ( INFO .LE. N ) INFO = N + J
  633:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
  634:      $              THEN
  635:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
  636:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  637:             END IF
  638: *
  639: *     Save the condition number.
  640: *
  641:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  642:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  643:             END IF
  644:          END DO
  645:       END IF
  646: 
  647:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
  648: *
  649: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
  650: *     each right-hand side using the current solution as an estimate of
  651: *     the true solution.  If the componentwise error estimate is too
  652: *     large, then the solution is a lousy estimate of truth and the
  653: *     estimated RCOND may be too optimistic.  To avoid misleading users,
  654: *     the inverse condition number is set to 0.0 when the estimated
  655: *     cwise error is at least CWISE_WRONG.
  656: *
  657:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
  658:          DO J = 1, NRHS
  659:             IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
  660:      $     THEN
  661:                RCOND_TMP = ZLA_SYRCOND_X( UPLO, N, A, LDA, AF, LDAF,
  662:      $         IPIV, X(1,J), INFO, WORK, RWORK )
  663:             ELSE
  664:                RCOND_TMP = 0.0D+0
  665:             END IF
  666: *
  667: *     Cap the error at 1.0.
  668: *
  669:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  670:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  671:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  672: 
  673: *
  674: *     Threshold the error (see LAWN).
  675: *
  676:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  677:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  678:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
  679:                IF (.NOT. IGNORE_CWISE
  680:      $              .AND. INFO.LT.N + J ) INFO = N + J
  681:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
  682:      $              .LT. ERR_LBND ) THEN
  683:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
  684:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  685:             END IF
  686: *
  687: *     Save the condition number.
  688: *
  689:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  690:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  691:             END IF
  692: 
  693:          END DO
  694:       END IF
  695: *
  696:       RETURN
  697: *
  698: *     End of ZSYRFSX
  699: *
  700:       END

CVSweb interface <joel.bertrand@systella.fr>