Annotation of rpl/lapack/lapack/zsyrfsx.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE ZSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
                      2:      $                    S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
                      3:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
                      4:      $                    WORK, RWORK, INFO )
                      5: *
                      6: *     -- LAPACK routine (version 3.2.2)                                 --
                      7: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
                      8: *     -- Jason Riedy of Univ. of California Berkeley.                 --
                      9: *     -- June 2010                                                    --
                     10: *
                     11: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
                     12: *     -- Univ. of California Berkeley and NAG Ltd.                    --
                     13: *
                     14:       IMPLICIT NONE
                     15: *     ..
                     16: *     .. Scalar Arguments ..
                     17:       CHARACTER          UPLO, EQUED
                     18:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                     19:      $                   N_ERR_BNDS
                     20:       DOUBLE PRECISION   RCOND
                     21: *     ..
                     22: *     .. Array Arguments ..
                     23:       INTEGER            IPIV( * )
                     24:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     25:      $                   X( LDX, * ), WORK( * )
                     26:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
                     27:      $                   ERR_BNDS_NORM( NRHS, * ),
                     28:      $                   ERR_BNDS_COMP( NRHS, * )
                     29: *     ..
                     30: *
                     31: *     Purpose
                     32: *     =======
                     33: *
                     34: *     ZSYRFSX improves the computed solution to a system of linear
                     35: *     equations when the coefficient matrix is symmetric indefinite, and
                     36: *     provides error bounds and backward error estimates for the
                     37: *     solution.  In addition to normwise error bound, the code provides
                     38: *     maximum componentwise error bound if possible.  See comments for
                     39: *     ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds.
                     40: *
                     41: *     The original system of linear equations may have been equilibrated
                     42: *     before calling this routine, as described by arguments EQUED and S
                     43: *     below. In this case, the solution and error bounds returned are
                     44: *     for the original unequilibrated system.
                     45: *
                     46: *     Arguments
                     47: *     =========
                     48: *
                     49: *     Some optional parameters are bundled in the PARAMS array.  These
                     50: *     settings determine how refinement is performed, but often the
                     51: *     defaults are acceptable.  If the defaults are acceptable, users
                     52: *     can pass NPARAMS = 0 which prevents the source code from accessing
                     53: *     the PARAMS argument.
                     54: *
                     55: *     UPLO    (input) CHARACTER*1
                     56: *       = 'U':  Upper triangle of A is stored;
                     57: *       = 'L':  Lower triangle of A is stored.
                     58: *
                     59: *     EQUED   (input) CHARACTER*1
                     60: *     Specifies the form of equilibration that was done to A
                     61: *     before calling this routine. This is needed to compute
                     62: *     the solution and error bounds correctly.
                     63: *       = 'N':  No equilibration
                     64: *       = 'Y':  Both row and column equilibration, i.e., A has been
                     65: *               replaced by diag(S) * A * diag(S).
                     66: *               The right hand side B has been changed accordingly.
                     67: *
                     68: *     N       (input) INTEGER
                     69: *     The order of the matrix A.  N >= 0.
                     70: *
                     71: *     NRHS    (input) INTEGER
                     72: *     The number of right hand sides, i.e., the number of columns
                     73: *     of the matrices B and X.  NRHS >= 0.
                     74: *
                     75: *     A       (input) COMPLEX*16 array, dimension (LDA,N)
                     76: *     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
                     77: *     upper triangular part of A contains the upper triangular
                     78: *     part of the matrix A, and the strictly lower triangular
                     79: *     part of A is not referenced.  If UPLO = 'L', the leading
                     80: *     N-by-N lower triangular part of A contains the lower
                     81: *     triangular part of the matrix A, and the strictly upper
                     82: *     triangular part of A is not referenced.
                     83: *
                     84: *     LDA     (input) INTEGER
                     85: *     The leading dimension of the array A.  LDA >= max(1,N).
                     86: *
                     87: *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
                     88: *     The factored form of the matrix A.  AF contains the block
                     89: *     diagonal matrix D and the multipliers used to obtain the
                     90: *     factor U or L from the factorization A = U*D*U**T or A =
                     91: *     L*D*L**T as computed by DSYTRF.
                     92: *
                     93: *     LDAF    (input) INTEGER
                     94: *     The leading dimension of the array AF.  LDAF >= max(1,N).
                     95: *
                     96: *     IPIV    (input) INTEGER array, dimension (N)
                     97: *     Details of the interchanges and the block structure of D
                     98: *     as determined by DSYTRF.
                     99: *
                    100: *     S       (input or output) DOUBLE PRECISION array, dimension (N)
                    101: *     The scale factors for A.  If EQUED = 'Y', A is multiplied on
                    102: *     the left and right by diag(S).  S is an input argument if FACT =
                    103: *     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
                    104: *     = 'Y', each element of S must be positive.  If S is output, each
                    105: *     element of S is a power of the radix. If S is input, each element
                    106: *     of S should be a power of the radix to ensure a reliable solution
                    107: *     and error estimates. Scaling by powers of the radix does not cause
                    108: *     rounding errors unless the result underflows or overflows.
                    109: *     Rounding errors during scaling lead to refining with a matrix that
                    110: *     is not equivalent to the input matrix, producing error estimates
                    111: *     that may not be reliable.
                    112: *
                    113: *     B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                    114: *     The right hand side matrix B.
                    115: *
                    116: *     LDB     (input) INTEGER
                    117: *     The leading dimension of the array B.  LDB >= max(1,N).
                    118: *
                    119: *     X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
                    120: *     On entry, the solution matrix X, as computed by DGETRS.
                    121: *     On exit, the improved solution matrix X.
                    122: *
                    123: *     LDX     (input) INTEGER
                    124: *     The leading dimension of the array X.  LDX >= max(1,N).
                    125: *
                    126: *     RCOND   (output) DOUBLE PRECISION
                    127: *     Reciprocal scaled condition number.  This is an estimate of the
                    128: *     reciprocal Skeel condition number of the matrix A after
                    129: *     equilibration (if done).  If this is less than the machine
                    130: *     precision (in particular, if it is zero), the matrix is singular
                    131: *     to working precision.  Note that the error may still be small even
                    132: *     if this number is very small and the matrix appears ill-
                    133: *     conditioned.
                    134: *
                    135: *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    136: *     Componentwise relative backward error.  This is the
                    137: *     componentwise relative backward error of each solution vector X(j)
                    138: *     (i.e., the smallest relative change in any element of A or B that
                    139: *     makes X(j) an exact solution).
                    140: *
                    141: *     N_ERR_BNDS (input) INTEGER
                    142: *     Number of error bounds to return for each right hand side
                    143: *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
                    144: *     ERR_BNDS_COMP below.
                    145: *
                    146: *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    147: *     For each right-hand side, this array contains information about
                    148: *     various error bounds and condition numbers corresponding to the
                    149: *     normwise relative error, which is defined as follows:
                    150: *
                    151: *     Normwise relative error in the ith solution vector:
                    152: *             max_j (abs(XTRUE(j,i) - X(j,i)))
                    153: *            ------------------------------
                    154: *                  max_j abs(X(j,i))
                    155: *
                    156: *     The array is indexed by the type of error information as described
                    157: *     below. There currently are up to three pieces of information
                    158: *     returned.
                    159: *
                    160: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    161: *     right-hand side.
                    162: *
                    163: *     The second index in ERR_BNDS_NORM(:,err) contains the following
                    164: *     three fields:
                    165: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    166: *              reciprocal condition number is less than the threshold
                    167: *              sqrt(n) * dlamch('Epsilon').
                    168: *
                    169: *     err = 2 "Guaranteed" error bound: The estimated forward error,
                    170: *              almost certainly within a factor of 10 of the true error
                    171: *              so long as the next entry is greater than the threshold
                    172: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    173: *              be trusted if the previous boolean is true.
                    174: *
                    175: *     err = 3  Reciprocal condition number: Estimated normwise
                    176: *              reciprocal condition number.  Compared with the threshold
                    177: *              sqrt(n) * dlamch('Epsilon') to determine if the error
                    178: *              estimate is "guaranteed". These reciprocal condition
                    179: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    180: *              appropriately scaled matrix Z.
                    181: *              Let Z = S*A, where S scales each row by a power of the
                    182: *              radix so all absolute row sums of Z are approximately 1.
                    183: *
                    184: *     See Lapack Working Note 165 for further details and extra
                    185: *     cautions.
                    186: *
                    187: *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    188: *     For each right-hand side, this array contains information about
                    189: *     various error bounds and condition numbers corresponding to the
                    190: *     componentwise relative error, which is defined as follows:
                    191: *
                    192: *     Componentwise relative error in the ith solution vector:
                    193: *                    abs(XTRUE(j,i) - X(j,i))
                    194: *             max_j ----------------------
                    195: *                         abs(X(j,i))
                    196: *
                    197: *     The array is indexed by the right-hand side i (on which the
                    198: *     componentwise relative error depends), and the type of error
                    199: *     information as described below. There currently are up to three
                    200: *     pieces of information returned for each right-hand side. If
                    201: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    202: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    203: *     the first (:,N_ERR_BNDS) entries are returned.
                    204: *
                    205: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    206: *     right-hand side.
                    207: *
                    208: *     The second index in ERR_BNDS_COMP(:,err) contains the following
                    209: *     three fields:
                    210: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    211: *              reciprocal condition number is less than the threshold
                    212: *              sqrt(n) * dlamch('Epsilon').
                    213: *
                    214: *     err = 2 "Guaranteed" error bound: The estimated forward error,
                    215: *              almost certainly within a factor of 10 of the true error
                    216: *              so long as the next entry is greater than the threshold
                    217: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    218: *              be trusted if the previous boolean is true.
                    219: *
                    220: *     err = 3  Reciprocal condition number: Estimated componentwise
                    221: *              reciprocal condition number.  Compared with the threshold
                    222: *              sqrt(n) * dlamch('Epsilon') to determine if the error
                    223: *              estimate is "guaranteed". These reciprocal condition
                    224: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    225: *              appropriately scaled matrix Z.
                    226: *              Let Z = S*(A*diag(x)), where x is the solution for the
                    227: *              current right-hand side and S scales each row of
                    228: *              A*diag(x) by a power of the radix so all absolute row
                    229: *              sums of Z are approximately 1.
                    230: *
                    231: *     See Lapack Working Note 165 for further details and extra
                    232: *     cautions.
                    233: *
                    234: *     NPARAMS (input) INTEGER
                    235: *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
                    236: *     PARAMS array is never referenced and default values are used.
                    237: *
                    238: *     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
                    239: *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
                    240: *     that entry will be filled with default value used for that
                    241: *     parameter.  Only positions up to NPARAMS are accessed; defaults
                    242: *     are used for higher-numbered parameters.
                    243: *
                    244: *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
                    245: *            refinement or not.
                    246: *         Default: 1.0D+0
                    247: *            = 0.0 : No refinement is performed, and no error bounds are
                    248: *                    computed.
                    249: *            = 1.0 : Use the double-precision refinement algorithm,
                    250: *                    possibly with doubled-single computations if the
                    251: *                    compilation environment does not support DOUBLE
                    252: *                    PRECISION.
                    253: *              (other values are reserved for future use)
                    254: *
                    255: *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
                    256: *            computations allowed for refinement.
                    257: *         Default: 10
                    258: *         Aggressive: Set to 100 to permit convergence using approximate
                    259: *                     factorizations or factorizations other than LU. If
                    260: *                     the factorization uses a technique other than
                    261: *                     Gaussian elimination, the guarantees in
                    262: *                     err_bnds_norm and err_bnds_comp may no longer be
                    263: *                     trustworthy.
                    264: *
                    265: *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
                    266: *            will attempt to find a solution with small componentwise
                    267: *            relative error in the double-precision algorithm.  Positive
                    268: *            is true, 0.0 is false.
                    269: *         Default: 1.0 (attempt componentwise convergence)
                    270: *
                    271: *     WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                    272: *
                    273: *     RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
                    274: *
                    275: *     INFO    (output) INTEGER
                    276: *       = 0:  Successful exit. The solution to every right-hand side is
                    277: *         guaranteed.
                    278: *       < 0:  If INFO = -i, the i-th argument had an illegal value
                    279: *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
                    280: *         has been completed, but the factor U is exactly singular, so
                    281: *         the solution and error bounds could not be computed. RCOND = 0
                    282: *         is returned.
                    283: *       = N+J: The solution corresponding to the Jth right-hand side is
                    284: *         not guaranteed. The solutions corresponding to other right-
                    285: *         hand sides K with K > J may not be guaranteed as well, but
                    286: *         only the first such right-hand side is reported. If a small
                    287: *         componentwise error is not requested (PARAMS(3) = 0.0) then
                    288: *         the Jth right-hand side is the first with a normwise error
                    289: *         bound that is not guaranteed (the smallest J such
                    290: *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
                    291: *         the Jth right-hand side is the first with either a normwise or
                    292: *         componentwise error bound that is not guaranteed (the smallest
                    293: *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
                    294: *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
                    295: *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
                    296: *         about all of the right-hand sides check ERR_BNDS_NORM or
                    297: *         ERR_BNDS_COMP.
                    298: *
                    299: *     ==================================================================
                    300: *
                    301: *     .. Parameters ..
                    302:       DOUBLE PRECISION   ZERO, ONE
                    303:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    304:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
                    305:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
                    306:       DOUBLE PRECISION   DZTHRESH_DEFAULT
                    307:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
                    308:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
                    309:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
                    310:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
                    311:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
                    312:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    313:      $                   LA_LINRX_CWISE_I
                    314:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    315:      $                   LA_LINRX_ITHRESH_I = 2 )
                    316:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    317:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    318:      $                   LA_LINRX_RCOND_I
                    319:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    320:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    321: *     ..
                    322: *     .. Local Scalars ..
                    323:       CHARACTER(1)       NORM
                    324:       LOGICAL            RCEQU
                    325:       INTEGER            J, PREC_TYPE, REF_TYPE
                    326:       INTEGER            N_NORMS
                    327:       DOUBLE PRECISION   ANORM, RCOND_TMP
                    328:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
                    329:       LOGICAL            IGNORE_CWISE
                    330:       INTEGER            ITHRESH
                    331:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
                    332: *     ..
                    333: *     .. External Subroutines ..
                    334:       EXTERNAL           XERBLA, ZSYCON, ZLA_SYRFSX_EXTENDED
                    335: *     ..
                    336: *     .. Intrinsic Functions ..
                    337:       INTRINSIC          MAX, SQRT, TRANSFER
                    338: *     ..
                    339: *     .. External Functions ..
                    340:       EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
                    341:       EXTERNAL           DLAMCH, ZLANSY, ZLA_SYRCOND_X, ZLA_SYRCOND_C
                    342:       DOUBLE PRECISION   DLAMCH, ZLANSY, ZLA_SYRCOND_X, ZLA_SYRCOND_C
                    343:       LOGICAL            LSAME
                    344:       INTEGER            BLAS_FPINFO_X
                    345:       INTEGER            ILATRANS, ILAPREC
                    346: *     ..
                    347: *     .. Executable Statements ..
                    348: *
                    349: *     Check the input parameters.
                    350: *
                    351:       INFO = 0
                    352:       REF_TYPE = INT( ITREF_DEFAULT )
                    353:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
                    354:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
                    355:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
                    356:          ELSE
                    357:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
                    358:          END IF
                    359:       END IF
                    360: *
                    361: *     Set default parameters.
                    362: *
                    363:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
                    364:       ITHRESH = INT( ITHRESH_DEFAULT )
                    365:       RTHRESH = RTHRESH_DEFAULT
                    366:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
                    367:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
                    368: *
                    369:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
                    370:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
                    371:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
                    372:          ELSE
                    373:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
                    374:          END IF
                    375:       END IF
                    376:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
                    377:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
                    378:             IF ( IGNORE_CWISE ) THEN
                    379:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
                    380:             ELSE
                    381:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
                    382:             END IF
                    383:          ELSE
                    384:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
                    385:          END IF
                    386:       END IF
                    387:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
                    388:          N_NORMS = 0
                    389:       ELSE IF ( IGNORE_CWISE ) THEN
                    390:          N_NORMS = 1
                    391:       ELSE
                    392:          N_NORMS = 2
                    393:       END IF
                    394: *
                    395:       RCEQU = LSAME( EQUED, 'Y' )
                    396: *
                    397: *     Test input parameters.
                    398: *
                    399:       IF ( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    400:         INFO = -1
                    401:       ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
                    402:         INFO = -2
                    403:       ELSE IF( N.LT.0 ) THEN
                    404:         INFO = -3
                    405:       ELSE IF( NRHS.LT.0 ) THEN
                    406:         INFO = -4
                    407:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    408:         INFO = -6
                    409:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    410:         INFO = -8
                    411:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    412:         INFO = -11
                    413:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    414:         INFO = -13
                    415:       END IF
                    416:       IF( INFO.NE.0 ) THEN
                    417:         CALL XERBLA( 'ZSYRFSX', -INFO )
                    418:         RETURN
                    419:       END IF
                    420: *
                    421: *     Quick return if possible.
                    422: *
                    423:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    424:          RCOND = 1.0D+0
                    425:          DO J = 1, NRHS
                    426:             BERR( J ) = 0.0D+0
                    427:             IF ( N_ERR_BNDS .GE. 1 ) THEN
                    428:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    429:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    430:             END IF
                    431:             IF ( N_ERR_BNDS .GE. 2 ) THEN
                    432:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
                    433:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
                    434:             END IF
                    435:             IF ( N_ERR_BNDS .GE. 3 ) THEN
                    436:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    437:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    438:             END IF
                    439:          END DO
                    440:          RETURN
                    441:       END IF
                    442: *
                    443: *     Default to failure.
                    444: *
                    445:       RCOND = 0.0D+0
                    446:       DO J = 1, NRHS
                    447:          BERR( J ) = 1.0D+0
                    448:          IF ( N_ERR_BNDS .GE. 1 ) THEN
                    449:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    450:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    451:          END IF
                    452:          IF ( N_ERR_BNDS .GE. 2 ) THEN
                    453:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    454:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    455:          END IF
                    456:          IF ( N_ERR_BNDS .GE. 3 ) THEN
                    457:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    458:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    459:          END IF
                    460:       END DO
                    461: *
                    462: *     Compute the norm of A and the reciprocal of the condition
                    463: *     number of A.
                    464: *
                    465:       NORM = 'I'
                    466:       ANORM = ZLANSY( NORM, UPLO, N, A, LDA, RWORK )
                    467:       CALL ZSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK,
                    468:      $     INFO )
                    469: *
                    470: *     Perform refinement on each right-hand side
                    471: *
                    472:       IF ( REF_TYPE .NE. 0 ) THEN
                    473: 
                    474:          PREC_TYPE = ILAPREC( 'E' )
                    475: 
                    476:          CALL ZLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO,  N,
                    477:      $        NRHS, A, LDA, AF, LDAF, IPIV, RCEQU, S, B,
                    478:      $        LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
                    479:      $        WORK, RWORK, WORK(N+1),
                    480:      $        TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N), RCOND,
                    481:      $        ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
                    482:      $        INFO )
                    483:       END IF
                    484: 
                    485:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
                    486:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
                    487: *
                    488: *     Compute scaled normwise condition number cond(A*C).
                    489: *
                    490:          IF ( RCEQU ) THEN
                    491:             RCOND_TMP = ZLA_SYRCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV,
                    492:      $           S, .TRUE., INFO, WORK, RWORK )
                    493:          ELSE
                    494:             RCOND_TMP = ZLA_SYRCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV,
                    495:      $           S, .FALSE., INFO, WORK, RWORK )
                    496:          END IF
                    497:          DO J = 1, NRHS
                    498: *
                    499: *     Cap the error at 1.0.
                    500: *
                    501:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    502:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    503:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    504: *
                    505: *     Threshold the error (see LAWN).
                    506: *
                    507:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    508:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    509:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    510:                IF ( INFO .LE. N ) INFO = N + J
                    511:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
                    512:      $              THEN
                    513:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
                    514:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    515:             END IF
                    516: *
                    517: *     Save the condition number.
                    518: *
                    519:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    520:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    521:             END IF
                    522:          END DO
                    523:       END IF
                    524: 
                    525:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
                    526: *
                    527: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
                    528: *     each right-hand side using the current solution as an estimate of
                    529: *     the true solution.  If the componentwise error estimate is too
                    530: *     large, then the solution is a lousy estimate of truth and the
                    531: *     estimated RCOND may be too optimistic.  To avoid misleading users,
                    532: *     the inverse condition number is set to 0.0 when the estimated
                    533: *     cwise error is at least CWISE_WRONG.
                    534: *
                    535:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
                    536:          DO J = 1, NRHS
                    537:             IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
                    538:      $     THEN
                    539:                RCOND_TMP = ZLA_SYRCOND_X( UPLO, N, A, LDA, AF, LDAF,
                    540:      $         IPIV, X(1,J), INFO, WORK, RWORK )
                    541:             ELSE
                    542:                RCOND_TMP = 0.0D+0
                    543:             END IF
                    544: *
                    545: *     Cap the error at 1.0.
                    546: *
                    547:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    548:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    549:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    550: 
                    551: *
                    552: *     Threshold the error (see LAWN).
                    553: *
                    554:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    555:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    556:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    557:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
                    558:      $              .AND. INFO.LT.N + J ) INFO = N + J
                    559:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
                    560:      $              .LT. ERR_LBND ) THEN
                    561:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
                    562:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    563:             END IF
                    564: *
                    565: *     Save the condition number.
                    566: *
                    567:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    568:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    569:             END IF
                    570: 
                    571:          END DO
                    572:       END IF
                    573: *
                    574:       RETURN
                    575: *
                    576: *     End of ZSYRFSX
                    577: *
                    578:       END

CVSweb interface <joel.bertrand@systella.fr>