File:  [local] / rpl / lapack / lapack / zsyrfs.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:38 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSYRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYRFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyrfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyrfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyrfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
   22: *                          X, LDX, FERR, BERR, WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   31: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   32: *      $                   WORK( * ), X( LDX, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZSYRFS improves the computed solution to a system of linear
   42: *> equations when the coefficient matrix is symmetric indefinite, and
   43: *> provides error bounds and backward error estimates for the solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>          = 'U':  Upper triangle of A is stored;
   53: *>          = 'L':  Lower triangle of A is stored.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] NRHS
   63: *> \verbatim
   64: *>          NRHS is INTEGER
   65: *>          The number of right hand sides, i.e., the number of columns
   66: *>          of the matrices B and X.  NRHS >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] A
   70: *> \verbatim
   71: *>          A is COMPLEX*16 array, dimension (LDA,N)
   72: *>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
   73: *>          upper triangular part of A contains the upper triangular part
   74: *>          of the matrix A, and the strictly lower triangular part of A
   75: *>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
   76: *>          triangular part of A contains the lower triangular part of
   77: *>          the matrix A, and the strictly upper triangular part of A is
   78: *>          not referenced.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] LDA
   82: *> \verbatim
   83: *>          LDA is INTEGER
   84: *>          The leading dimension of the array A.  LDA >= max(1,N).
   85: *> \endverbatim
   86: *>
   87: *> \param[in] AF
   88: *> \verbatim
   89: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
   90: *>          The factored form of the matrix A.  AF contains the block
   91: *>          diagonal matrix D and the multipliers used to obtain the
   92: *>          factor U or L from the factorization A = U*D*U**T or
   93: *>          A = L*D*L**T as computed by ZSYTRF.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDAF
   97: *> \verbatim
   98: *>          LDAF is INTEGER
   99: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
  100: *> \endverbatim
  101: *>
  102: *> \param[in] IPIV
  103: *> \verbatim
  104: *>          IPIV is INTEGER array, dimension (N)
  105: *>          Details of the interchanges and the block structure of D
  106: *>          as determined by ZSYTRF.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] B
  110: *> \verbatim
  111: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  112: *>          The right hand side matrix B.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDB
  116: *> \verbatim
  117: *>          LDB is INTEGER
  118: *>          The leading dimension of the array B.  LDB >= max(1,N).
  119: *> \endverbatim
  120: *>
  121: *> \param[in,out] X
  122: *> \verbatim
  123: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  124: *>          On entry, the solution matrix X, as computed by ZSYTRS.
  125: *>          On exit, the improved solution matrix X.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] LDX
  129: *> \verbatim
  130: *>          LDX is INTEGER
  131: *>          The leading dimension of the array X.  LDX >= max(1,N).
  132: *> \endverbatim
  133: *>
  134: *> \param[out] FERR
  135: *> \verbatim
  136: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  137: *>          The estimated forward error bound for each solution vector
  138: *>          X(j) (the j-th column of the solution matrix X).
  139: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  140: *>          is an estimated upper bound for the magnitude of the largest
  141: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  142: *>          largest element in X(j).  The estimate is as reliable as
  143: *>          the estimate for RCOND, and is almost always a slight
  144: *>          overestimate of the true error.
  145: *> \endverbatim
  146: *>
  147: *> \param[out] BERR
  148: *> \verbatim
  149: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  150: *>          The componentwise relative backward error of each solution
  151: *>          vector X(j) (i.e., the smallest relative change in
  152: *>          any element of A or B that makes X(j) an exact solution).
  153: *> \endverbatim
  154: *>
  155: *> \param[out] WORK
  156: *> \verbatim
  157: *>          WORK is COMPLEX*16 array, dimension (2*N)
  158: *> \endverbatim
  159: *>
  160: *> \param[out] RWORK
  161: *> \verbatim
  162: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  163: *> \endverbatim
  164: *>
  165: *> \param[out] INFO
  166: *> \verbatim
  167: *>          INFO is INTEGER
  168: *>          = 0:  successful exit
  169: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  170: *> \endverbatim
  171: *
  172: *> \par Internal Parameters:
  173: *  =========================
  174: *>
  175: *> \verbatim
  176: *>  ITMAX is the maximum number of steps of iterative refinement.
  177: *> \endverbatim
  178: *
  179: *  Authors:
  180: *  ========
  181: *
  182: *> \author Univ. of Tennessee
  183: *> \author Univ. of California Berkeley
  184: *> \author Univ. of Colorado Denver
  185: *> \author NAG Ltd.
  186: *
  187: *> \ingroup complex16SYcomputational
  188: *
  189: *  =====================================================================
  190:       SUBROUTINE ZSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  191:      $                   X, LDX, FERR, BERR, WORK, RWORK, INFO )
  192: *
  193: *  -- LAPACK computational routine --
  194: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  195: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  196: *
  197: *     .. Scalar Arguments ..
  198:       CHARACTER          UPLO
  199:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
  200: *     ..
  201: *     .. Array Arguments ..
  202:       INTEGER            IPIV( * )
  203:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  204:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  205:      $                   WORK( * ), X( LDX, * )
  206: *     ..
  207: *
  208: *  =====================================================================
  209: *
  210: *     .. Parameters ..
  211:       INTEGER            ITMAX
  212:       PARAMETER          ( ITMAX = 5 )
  213:       DOUBLE PRECISION   ZERO
  214:       PARAMETER          ( ZERO = 0.0D+0 )
  215:       COMPLEX*16         ONE
  216:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  217:       DOUBLE PRECISION   TWO
  218:       PARAMETER          ( TWO = 2.0D+0 )
  219:       DOUBLE PRECISION   THREE
  220:       PARAMETER          ( THREE = 3.0D+0 )
  221: *     ..
  222: *     .. Local Scalars ..
  223:       LOGICAL            UPPER
  224:       INTEGER            COUNT, I, J, K, KASE, NZ
  225:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  226:       COMPLEX*16         ZDUM
  227: *     ..
  228: *     .. Local Arrays ..
  229:       INTEGER            ISAVE( 3 )
  230: *     ..
  231: *     .. External Subroutines ..
  232:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZLACN2, ZSYMV, ZSYTRS
  233: *     ..
  234: *     .. Intrinsic Functions ..
  235:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  236: *     ..
  237: *     .. External Functions ..
  238:       LOGICAL            LSAME
  239:       DOUBLE PRECISION   DLAMCH
  240:       EXTERNAL           LSAME, DLAMCH
  241: *     ..
  242: *     .. Statement Functions ..
  243:       DOUBLE PRECISION   CABS1
  244: *     ..
  245: *     .. Statement Function definitions ..
  246:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  247: *     ..
  248: *     .. Executable Statements ..
  249: *
  250: *     Test the input parameters.
  251: *
  252:       INFO = 0
  253:       UPPER = LSAME( UPLO, 'U' )
  254:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  255:          INFO = -1
  256:       ELSE IF( N.LT.0 ) THEN
  257:          INFO = -2
  258:       ELSE IF( NRHS.LT.0 ) THEN
  259:          INFO = -3
  260:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  261:          INFO = -5
  262:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  263:          INFO = -7
  264:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  265:          INFO = -10
  266:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  267:          INFO = -12
  268:       END IF
  269:       IF( INFO.NE.0 ) THEN
  270:          CALL XERBLA( 'ZSYRFS', -INFO )
  271:          RETURN
  272:       END IF
  273: *
  274: *     Quick return if possible
  275: *
  276:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  277:          DO 10 J = 1, NRHS
  278:             FERR( J ) = ZERO
  279:             BERR( J ) = ZERO
  280:    10    CONTINUE
  281:          RETURN
  282:       END IF
  283: *
  284: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  285: *
  286:       NZ = N + 1
  287:       EPS = DLAMCH( 'Epsilon' )
  288:       SAFMIN = DLAMCH( 'Safe minimum' )
  289:       SAFE1 = NZ*SAFMIN
  290:       SAFE2 = SAFE1 / EPS
  291: *
  292: *     Do for each right hand side
  293: *
  294:       DO 140 J = 1, NRHS
  295: *
  296:          COUNT = 1
  297:          LSTRES = THREE
  298:    20    CONTINUE
  299: *
  300: *        Loop until stopping criterion is satisfied.
  301: *
  302: *        Compute residual R = B - A * X
  303: *
  304:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  305:          CALL ZSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK, 1 )
  306: *
  307: *        Compute componentwise relative backward error from formula
  308: *
  309: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  310: *
  311: *        where abs(Z) is the componentwise absolute value of the matrix
  312: *        or vector Z.  If the i-th component of the denominator is less
  313: *        than SAFE2, then SAFE1 is added to the i-th components of the
  314: *        numerator and denominator before dividing.
  315: *
  316:          DO 30 I = 1, N
  317:             RWORK( I ) = CABS1( B( I, J ) )
  318:    30    CONTINUE
  319: *
  320: *        Compute abs(A)*abs(X) + abs(B).
  321: *
  322:          IF( UPPER ) THEN
  323:             DO 50 K = 1, N
  324:                S = ZERO
  325:                XK = CABS1( X( K, J ) )
  326:                DO 40 I = 1, K - 1
  327:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  328:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  329:    40          CONTINUE
  330:                RWORK( K ) = RWORK( K ) + CABS1( A( K, K ) )*XK + S
  331:    50       CONTINUE
  332:          ELSE
  333:             DO 70 K = 1, N
  334:                S = ZERO
  335:                XK = CABS1( X( K, J ) )
  336:                RWORK( K ) = RWORK( K ) + CABS1( A( K, K ) )*XK
  337:                DO 60 I = K + 1, N
  338:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  339:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  340:    60          CONTINUE
  341:                RWORK( K ) = RWORK( K ) + S
  342:    70       CONTINUE
  343:          END IF
  344:          S = ZERO
  345:          DO 80 I = 1, N
  346:             IF( RWORK( I ).GT.SAFE2 ) THEN
  347:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  348:             ELSE
  349:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  350:      $             ( RWORK( I )+SAFE1 ) )
  351:             END IF
  352:    80    CONTINUE
  353:          BERR( J ) = S
  354: *
  355: *        Test stopping criterion. Continue iterating if
  356: *           1) The residual BERR(J) is larger than machine epsilon, and
  357: *           2) BERR(J) decreased by at least a factor of 2 during the
  358: *              last iteration, and
  359: *           3) At most ITMAX iterations tried.
  360: *
  361:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  362:      $       COUNT.LE.ITMAX ) THEN
  363: *
  364: *           Update solution and try again.
  365: *
  366:             CALL ZSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  367:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  368:             LSTRES = BERR( J )
  369:             COUNT = COUNT + 1
  370:             GO TO 20
  371:          END IF
  372: *
  373: *        Bound error from formula
  374: *
  375: *        norm(X - XTRUE) / norm(X) .le. FERR =
  376: *        norm( abs(inv(A))*
  377: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  378: *
  379: *        where
  380: *          norm(Z) is the magnitude of the largest component of Z
  381: *          inv(A) is the inverse of A
  382: *          abs(Z) is the componentwise absolute value of the matrix or
  383: *             vector Z
  384: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  385: *          EPS is machine epsilon
  386: *
  387: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  388: *        is incremented by SAFE1 if the i-th component of
  389: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  390: *
  391: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  392: *           inv(A) * diag(W),
  393: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  394: *
  395:          DO 90 I = 1, N
  396:             IF( RWORK( I ).GT.SAFE2 ) THEN
  397:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  398:             ELSE
  399:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  400:      $                      SAFE1
  401:             END IF
  402:    90    CONTINUE
  403: *
  404:          KASE = 0
  405:   100    CONTINUE
  406:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  407:          IF( KASE.NE.0 ) THEN
  408:             IF( KASE.EQ.1 ) THEN
  409: *
  410: *              Multiply by diag(W)*inv(A**T).
  411: *
  412:                CALL ZSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  413:                DO 110 I = 1, N
  414:                   WORK( I ) = RWORK( I )*WORK( I )
  415:   110          CONTINUE
  416:             ELSE IF( KASE.EQ.2 ) THEN
  417: *
  418: *              Multiply by inv(A)*diag(W).
  419: *
  420:                DO 120 I = 1, N
  421:                   WORK( I ) = RWORK( I )*WORK( I )
  422:   120          CONTINUE
  423:                CALL ZSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  424:             END IF
  425:             GO TO 100
  426:          END IF
  427: *
  428: *        Normalize error.
  429: *
  430:          LSTRES = ZERO
  431:          DO 130 I = 1, N
  432:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  433:   130    CONTINUE
  434:          IF( LSTRES.NE.ZERO )
  435:      $      FERR( J ) = FERR( J ) / LSTRES
  436: *
  437:   140 CONTINUE
  438: *
  439:       RETURN
  440: *
  441: *     End of ZSYRFS
  442: *
  443:       END

CVSweb interface <joel.bertrand@systella.fr>