File:  [local] / rpl / lapack / lapack / zsyrfs.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:55 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief \b ZSYRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZSYRFS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyrfs.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyrfs.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyrfs.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
   22: *                          X, LDX, FERR, BERR, WORK, RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   31: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   32: *      $                   WORK( * ), X( LDX, * )
   33: *       ..
   34: *  
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZSYRFS improves the computed solution to a system of linear
   42: *> equations when the coefficient matrix is symmetric indefinite, and
   43: *> provides error bounds and backward error estimates for the solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>          = 'U':  Upper triangle of A is stored;
   53: *>          = 'L':  Lower triangle of A is stored.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] NRHS
   63: *> \verbatim
   64: *>          NRHS is INTEGER
   65: *>          The number of right hand sides, i.e., the number of columns
   66: *>          of the matrices B and X.  NRHS >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] A
   70: *> \verbatim
   71: *>          A is COMPLEX*16 array, dimension (LDA,N)
   72: *>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
   73: *>          upper triangular part of A contains the upper triangular part
   74: *>          of the matrix A, and the strictly lower triangular part of A
   75: *>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
   76: *>          triangular part of A contains the lower triangular part of
   77: *>          the matrix A, and the strictly upper triangular part of A is
   78: *>          not referenced.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] LDA
   82: *> \verbatim
   83: *>          LDA is INTEGER
   84: *>          The leading dimension of the array A.  LDA >= max(1,N).
   85: *> \endverbatim
   86: *>
   87: *> \param[in] AF
   88: *> \verbatim
   89: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
   90: *>          The factored form of the matrix A.  AF contains the block
   91: *>          diagonal matrix D and the multipliers used to obtain the
   92: *>          factor U or L from the factorization A = U*D*U**T or
   93: *>          A = L*D*L**T as computed by ZSYTRF.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDAF
   97: *> \verbatim
   98: *>          LDAF is INTEGER
   99: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
  100: *> \endverbatim
  101: *>
  102: *> \param[in] IPIV
  103: *> \verbatim
  104: *>          IPIV is INTEGER array, dimension (N)
  105: *>          Details of the interchanges and the block structure of D
  106: *>          as determined by ZSYTRF.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] B
  110: *> \verbatim
  111: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  112: *>          The right hand side matrix B.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDB
  116: *> \verbatim
  117: *>          LDB is INTEGER
  118: *>          The leading dimension of the array B.  LDB >= max(1,N).
  119: *> \endverbatim
  120: *>
  121: *> \param[in,out] X
  122: *> \verbatim
  123: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  124: *>          On entry, the solution matrix X, as computed by ZSYTRS.
  125: *>          On exit, the improved solution matrix X.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] LDX
  129: *> \verbatim
  130: *>          LDX is INTEGER
  131: *>          The leading dimension of the array X.  LDX >= max(1,N).
  132: *> \endverbatim
  133: *>
  134: *> \param[out] FERR
  135: *> \verbatim
  136: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  137: *>          The estimated forward error bound for each solution vector
  138: *>          X(j) (the j-th column of the solution matrix X).
  139: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  140: *>          is an estimated upper bound for the magnitude of the largest
  141: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  142: *>          largest element in X(j).  The estimate is as reliable as
  143: *>          the estimate for RCOND, and is almost always a slight
  144: *>          overestimate of the true error.
  145: *> \endverbatim
  146: *>
  147: *> \param[out] BERR
  148: *> \verbatim
  149: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  150: *>          The componentwise relative backward error of each solution
  151: *>          vector X(j) (i.e., the smallest relative change in
  152: *>          any element of A or B that makes X(j) an exact solution).
  153: *> \endverbatim
  154: *>
  155: *> \param[out] WORK
  156: *> \verbatim
  157: *>          WORK is COMPLEX*16 array, dimension (2*N)
  158: *> \endverbatim
  159: *>
  160: *> \param[out] RWORK
  161: *> \verbatim
  162: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  163: *> \endverbatim
  164: *>
  165: *> \param[out] INFO
  166: *> \verbatim
  167: *>          INFO is INTEGER
  168: *>          = 0:  successful exit
  169: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  170: *> \endverbatim
  171: *
  172: *> \par Internal Parameters:
  173: *  =========================
  174: *>
  175: *> \verbatim
  176: *>  ITMAX is the maximum number of steps of iterative refinement.
  177: *> \endverbatim
  178: *
  179: *  Authors:
  180: *  ========
  181: *
  182: *> \author Univ. of Tennessee 
  183: *> \author Univ. of California Berkeley 
  184: *> \author Univ. of Colorado Denver 
  185: *> \author NAG Ltd. 
  186: *
  187: *> \date November 2011
  188: *
  189: *> \ingroup complex16SYcomputational
  190: *
  191: *  =====================================================================
  192:       SUBROUTINE ZSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  193:      $                   X, LDX, FERR, BERR, WORK, RWORK, INFO )
  194: *
  195: *  -- LAPACK computational routine (version 3.4.0) --
  196: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  197: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  198: *     November 2011
  199: *
  200: *     .. Scalar Arguments ..
  201:       CHARACTER          UPLO
  202:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
  203: *     ..
  204: *     .. Array Arguments ..
  205:       INTEGER            IPIV( * )
  206:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  207:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  208:      $                   WORK( * ), X( LDX, * )
  209: *     ..
  210: *
  211: *  =====================================================================
  212: *
  213: *     .. Parameters ..
  214:       INTEGER            ITMAX
  215:       PARAMETER          ( ITMAX = 5 )
  216:       DOUBLE PRECISION   ZERO
  217:       PARAMETER          ( ZERO = 0.0D+0 )
  218:       COMPLEX*16         ONE
  219:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  220:       DOUBLE PRECISION   TWO
  221:       PARAMETER          ( TWO = 2.0D+0 )
  222:       DOUBLE PRECISION   THREE
  223:       PARAMETER          ( THREE = 3.0D+0 )
  224: *     ..
  225: *     .. Local Scalars ..
  226:       LOGICAL            UPPER
  227:       INTEGER            COUNT, I, J, K, KASE, NZ
  228:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  229:       COMPLEX*16         ZDUM
  230: *     ..
  231: *     .. Local Arrays ..
  232:       INTEGER            ISAVE( 3 )
  233: *     ..
  234: *     .. External Subroutines ..
  235:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZLACN2, ZSYMV, ZSYTRS
  236: *     ..
  237: *     .. Intrinsic Functions ..
  238:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  239: *     ..
  240: *     .. External Functions ..
  241:       LOGICAL            LSAME
  242:       DOUBLE PRECISION   DLAMCH
  243:       EXTERNAL           LSAME, DLAMCH
  244: *     ..
  245: *     .. Statement Functions ..
  246:       DOUBLE PRECISION   CABS1
  247: *     ..
  248: *     .. Statement Function definitions ..
  249:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  250: *     ..
  251: *     .. Executable Statements ..
  252: *
  253: *     Test the input parameters.
  254: *
  255:       INFO = 0
  256:       UPPER = LSAME( UPLO, 'U' )
  257:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  258:          INFO = -1
  259:       ELSE IF( N.LT.0 ) THEN
  260:          INFO = -2
  261:       ELSE IF( NRHS.LT.0 ) THEN
  262:          INFO = -3
  263:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  264:          INFO = -5
  265:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  266:          INFO = -7
  267:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  268:          INFO = -10
  269:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  270:          INFO = -12
  271:       END IF
  272:       IF( INFO.NE.0 ) THEN
  273:          CALL XERBLA( 'ZSYRFS', -INFO )
  274:          RETURN
  275:       END IF
  276: *
  277: *     Quick return if possible
  278: *
  279:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  280:          DO 10 J = 1, NRHS
  281:             FERR( J ) = ZERO
  282:             BERR( J ) = ZERO
  283:    10    CONTINUE
  284:          RETURN
  285:       END IF
  286: *
  287: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  288: *
  289:       NZ = N + 1
  290:       EPS = DLAMCH( 'Epsilon' )
  291:       SAFMIN = DLAMCH( 'Safe minimum' )
  292:       SAFE1 = NZ*SAFMIN
  293:       SAFE2 = SAFE1 / EPS
  294: *
  295: *     Do for each right hand side
  296: *
  297:       DO 140 J = 1, NRHS
  298: *
  299:          COUNT = 1
  300:          LSTRES = THREE
  301:    20    CONTINUE
  302: *
  303: *        Loop until stopping criterion is satisfied.
  304: *
  305: *        Compute residual R = B - A * X
  306: *
  307:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  308:          CALL ZSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK, 1 )
  309: *
  310: *        Compute componentwise relative backward error from formula
  311: *
  312: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  313: *
  314: *        where abs(Z) is the componentwise absolute value of the matrix
  315: *        or vector Z.  If the i-th component of the denominator is less
  316: *        than SAFE2, then SAFE1 is added to the i-th components of the
  317: *        numerator and denominator before dividing.
  318: *
  319:          DO 30 I = 1, N
  320:             RWORK( I ) = CABS1( B( I, J ) )
  321:    30    CONTINUE
  322: *
  323: *        Compute abs(A)*abs(X) + abs(B).
  324: *
  325:          IF( UPPER ) THEN
  326:             DO 50 K = 1, N
  327:                S = ZERO
  328:                XK = CABS1( X( K, J ) )
  329:                DO 40 I = 1, K - 1
  330:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  331:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  332:    40          CONTINUE
  333:                RWORK( K ) = RWORK( K ) + CABS1( A( K, K ) )*XK + S
  334:    50       CONTINUE
  335:          ELSE
  336:             DO 70 K = 1, N
  337:                S = ZERO
  338:                XK = CABS1( X( K, J ) )
  339:                RWORK( K ) = RWORK( K ) + CABS1( A( K, K ) )*XK
  340:                DO 60 I = K + 1, N
  341:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  342:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  343:    60          CONTINUE
  344:                RWORK( K ) = RWORK( K ) + S
  345:    70       CONTINUE
  346:          END IF
  347:          S = ZERO
  348:          DO 80 I = 1, N
  349:             IF( RWORK( I ).GT.SAFE2 ) THEN
  350:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  351:             ELSE
  352:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  353:      $             ( RWORK( I )+SAFE1 ) )
  354:             END IF
  355:    80    CONTINUE
  356:          BERR( J ) = S
  357: *
  358: *        Test stopping criterion. Continue iterating if
  359: *           1) The residual BERR(J) is larger than machine epsilon, and
  360: *           2) BERR(J) decreased by at least a factor of 2 during the
  361: *              last iteration, and
  362: *           3) At most ITMAX iterations tried.
  363: *
  364:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  365:      $       COUNT.LE.ITMAX ) THEN
  366: *
  367: *           Update solution and try again.
  368: *
  369:             CALL ZSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  370:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  371:             LSTRES = BERR( J )
  372:             COUNT = COUNT + 1
  373:             GO TO 20
  374:          END IF
  375: *
  376: *        Bound error from formula
  377: *
  378: *        norm(X - XTRUE) / norm(X) .le. FERR =
  379: *        norm( abs(inv(A))*
  380: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  381: *
  382: *        where
  383: *          norm(Z) is the magnitude of the largest component of Z
  384: *          inv(A) is the inverse of A
  385: *          abs(Z) is the componentwise absolute value of the matrix or
  386: *             vector Z
  387: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  388: *          EPS is machine epsilon
  389: *
  390: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  391: *        is incremented by SAFE1 if the i-th component of
  392: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  393: *
  394: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  395: *           inv(A) * diag(W),
  396: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  397: *
  398:          DO 90 I = 1, N
  399:             IF( RWORK( I ).GT.SAFE2 ) THEN
  400:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  401:             ELSE
  402:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  403:      $                      SAFE1
  404:             END IF
  405:    90    CONTINUE
  406: *
  407:          KASE = 0
  408:   100    CONTINUE
  409:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  410:          IF( KASE.NE.0 ) THEN
  411:             IF( KASE.EQ.1 ) THEN
  412: *
  413: *              Multiply by diag(W)*inv(A**T).
  414: *
  415:                CALL ZSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  416:                DO 110 I = 1, N
  417:                   WORK( I ) = RWORK( I )*WORK( I )
  418:   110          CONTINUE
  419:             ELSE IF( KASE.EQ.2 ) THEN
  420: *
  421: *              Multiply by inv(A)*diag(W).
  422: *
  423:                DO 120 I = 1, N
  424:                   WORK( I ) = RWORK( I )*WORK( I )
  425:   120          CONTINUE
  426:                CALL ZSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  427:             END IF
  428:             GO TO 100
  429:          END IF
  430: *
  431: *        Normalize error.
  432: *
  433:          LSTRES = ZERO
  434:          DO 130 I = 1, N
  435:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  436:   130    CONTINUE
  437:          IF( LSTRES.NE.ZERO )
  438:      $      FERR( J ) = FERR( J ) / LSTRES
  439: *
  440:   140 CONTINUE
  441: *
  442:       RETURN
  443: *
  444: *     End of ZSYRFS
  445: *
  446:       END

CVSweb interface <joel.bertrand@systella.fr>