File:  [local] / rpl / lapack / lapack / zsyr.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:38 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSYR performs the symmetric rank-1 update of a complex symmetric matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYR( UPLO, N, ALPHA, X, INCX, A, LDA )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INCX, LDA, N
   26: *       COMPLEX*16         ALPHA
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * ), X( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSYR   performs the symmetric rank 1 operation
   39: *>
   40: *>    A := alpha*x*x**H + A,
   41: *>
   42: *> where alpha is a complex scalar, x is an n element vector and A is an
   43: *> n by n symmetric matrix.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>           On entry, UPLO specifies whether the upper or lower
   53: *>           triangular part of the array A is to be referenced as
   54: *>           follows:
   55: *>
   56: *>              UPLO = 'U' or 'u'   Only the upper triangular part of A
   57: *>                                  is to be referenced.
   58: *>
   59: *>              UPLO = 'L' or 'l'   Only the lower triangular part of A
   60: *>                                  is to be referenced.
   61: *>
   62: *>           Unchanged on exit.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>           On entry, N specifies the order of the matrix A.
   69: *>           N must be at least zero.
   70: *>           Unchanged on exit.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] ALPHA
   74: *> \verbatim
   75: *>          ALPHA is COMPLEX*16
   76: *>           On entry, ALPHA specifies the scalar alpha.
   77: *>           Unchanged on exit.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] X
   81: *> \verbatim
   82: *>          X is COMPLEX*16 array, dimension at least
   83: *>           ( 1 + ( N - 1 )*abs( INCX ) ).
   84: *>           Before entry, the incremented array X must contain the N-
   85: *>           element vector x.
   86: *>           Unchanged on exit.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] INCX
   90: *> \verbatim
   91: *>          INCX is INTEGER
   92: *>           On entry, INCX specifies the increment for the elements of
   93: *>           X. INCX must not be zero.
   94: *>           Unchanged on exit.
   95: *> \endverbatim
   96: *>
   97: *> \param[in,out] A
   98: *> \verbatim
   99: *>          A is COMPLEX*16 array, dimension ( LDA, N )
  100: *>           Before entry, with  UPLO = 'U' or 'u', the leading n by n
  101: *>           upper triangular part of the array A must contain the upper
  102: *>           triangular part of the symmetric matrix and the strictly
  103: *>           lower triangular part of A is not referenced. On exit, the
  104: *>           upper triangular part of the array A is overwritten by the
  105: *>           upper triangular part of the updated matrix.
  106: *>           Before entry, with UPLO = 'L' or 'l', the leading n by n
  107: *>           lower triangular part of the array A must contain the lower
  108: *>           triangular part of the symmetric matrix and the strictly
  109: *>           upper triangular part of A is not referenced. On exit, the
  110: *>           lower triangular part of the array A is overwritten by the
  111: *>           lower triangular part of the updated matrix.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] LDA
  115: *> \verbatim
  116: *>          LDA is INTEGER
  117: *>           On entry, LDA specifies the first dimension of A as declared
  118: *>           in the calling (sub) program. LDA must be at least
  119: *>           max( 1, N ).
  120: *>           Unchanged on exit.
  121: *> \endverbatim
  122: *
  123: *  Authors:
  124: *  ========
  125: *
  126: *> \author Univ. of Tennessee
  127: *> \author Univ. of California Berkeley
  128: *> \author Univ. of Colorado Denver
  129: *> \author NAG Ltd.
  130: *
  131: *> \ingroup complex16SYauxiliary
  132: *
  133: *  =====================================================================
  134:       SUBROUTINE ZSYR( UPLO, N, ALPHA, X, INCX, A, LDA )
  135: *
  136: *  -- LAPACK auxiliary routine --
  137: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  138: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  139: *
  140: *     .. Scalar Arguments ..
  141:       CHARACTER          UPLO
  142:       INTEGER            INCX, LDA, N
  143:       COMPLEX*16         ALPHA
  144: *     ..
  145: *     .. Array Arguments ..
  146:       COMPLEX*16         A( LDA, * ), X( * )
  147: *     ..
  148: *
  149: * =====================================================================
  150: *
  151: *     .. Parameters ..
  152:       COMPLEX*16         ZERO
  153:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  154: *     ..
  155: *     .. Local Scalars ..
  156:       INTEGER            I, INFO, IX, J, JX, KX
  157:       COMPLEX*16         TEMP
  158: *     ..
  159: *     .. External Functions ..
  160:       LOGICAL            LSAME
  161:       EXTERNAL           LSAME
  162: *     ..
  163: *     .. External Subroutines ..
  164:       EXTERNAL           XERBLA
  165: *     ..
  166: *     .. Intrinsic Functions ..
  167:       INTRINSIC          MAX
  168: *     ..
  169: *     .. Executable Statements ..
  170: *
  171: *     Test the input parameters.
  172: *
  173:       INFO = 0
  174:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  175:          INFO = 1
  176:       ELSE IF( N.LT.0 ) THEN
  177:          INFO = 2
  178:       ELSE IF( INCX.EQ.0 ) THEN
  179:          INFO = 5
  180:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  181:          INFO = 7
  182:       END IF
  183:       IF( INFO.NE.0 ) THEN
  184:          CALL XERBLA( 'ZSYR  ', INFO )
  185:          RETURN
  186:       END IF
  187: *
  188: *     Quick return if possible.
  189: *
  190:       IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
  191:      $   RETURN
  192: *
  193: *     Set the start point in X if the increment is not unity.
  194: *
  195:       IF( INCX.LE.0 ) THEN
  196:          KX = 1 - ( N-1 )*INCX
  197:       ELSE IF( INCX.NE.1 ) THEN
  198:          KX = 1
  199:       END IF
  200: *
  201: *     Start the operations. In this version the elements of A are
  202: *     accessed sequentially with one pass through the triangular part
  203: *     of A.
  204: *
  205:       IF( LSAME( UPLO, 'U' ) ) THEN
  206: *
  207: *        Form  A  when A is stored in upper triangle.
  208: *
  209:          IF( INCX.EQ.1 ) THEN
  210:             DO 20 J = 1, N
  211:                IF( X( J ).NE.ZERO ) THEN
  212:                   TEMP = ALPHA*X( J )
  213:                   DO 10 I = 1, J
  214:                      A( I, J ) = A( I, J ) + X( I )*TEMP
  215:    10             CONTINUE
  216:                END IF
  217:    20       CONTINUE
  218:          ELSE
  219:             JX = KX
  220:             DO 40 J = 1, N
  221:                IF( X( JX ).NE.ZERO ) THEN
  222:                   TEMP = ALPHA*X( JX )
  223:                   IX = KX
  224:                   DO 30 I = 1, J
  225:                      A( I, J ) = A( I, J ) + X( IX )*TEMP
  226:                      IX = IX + INCX
  227:    30             CONTINUE
  228:                END IF
  229:                JX = JX + INCX
  230:    40       CONTINUE
  231:          END IF
  232:       ELSE
  233: *
  234: *        Form  A  when A is stored in lower triangle.
  235: *
  236:          IF( INCX.EQ.1 ) THEN
  237:             DO 60 J = 1, N
  238:                IF( X( J ).NE.ZERO ) THEN
  239:                   TEMP = ALPHA*X( J )
  240:                   DO 50 I = J, N
  241:                      A( I, J ) = A( I, J ) + X( I )*TEMP
  242:    50             CONTINUE
  243:                END IF
  244:    60       CONTINUE
  245:          ELSE
  246:             JX = KX
  247:             DO 80 J = 1, N
  248:                IF( X( JX ).NE.ZERO ) THEN
  249:                   TEMP = ALPHA*X( JX )
  250:                   IX = JX
  251:                   DO 70 I = J, N
  252:                      A( I, J ) = A( I, J ) + X( IX )*TEMP
  253:                      IX = IX + INCX
  254:    70             CONTINUE
  255:                END IF
  256:                JX = JX + INCX
  257:    80       CONTINUE
  258:          END IF
  259:       END IF
  260: *
  261:       RETURN
  262: *
  263: *     End of ZSYR
  264: *
  265:       END

CVSweb interface <joel.bertrand@systella.fr>