File:  [local] / rpl / lapack / lapack / zsyr.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZSYR( UPLO, N, ALPHA, X, INCX, A, LDA )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INCX, LDA, N
   11:       COMPLEX*16         ALPHA
   12: *     ..
   13: *     .. Array Arguments ..
   14:       COMPLEX*16         A( LDA, * ), X( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZSYR   performs the symmetric rank 1 operation
   21: *
   22: *     A := alpha*x*( x' ) + A,
   23: *
   24: *  where alpha is a complex scalar, x is an n element vector and A is an
   25: *  n by n symmetric matrix.
   26: *
   27: *  Arguments
   28: *  ==========
   29: *
   30: *  UPLO     (input) CHARACTER*1
   31: *           On entry, UPLO specifies whether the upper or lower
   32: *           triangular part of the array A is to be referenced as
   33: *           follows:
   34: *
   35: *              UPLO = 'U' or 'u'   Only the upper triangular part of A
   36: *                                  is to be referenced.
   37: *
   38: *              UPLO = 'L' or 'l'   Only the lower triangular part of A
   39: *                                  is to be referenced.
   40: *
   41: *           Unchanged on exit.
   42: *
   43: *  N        (input) INTEGER
   44: *           On entry, N specifies the order of the matrix A.
   45: *           N must be at least zero.
   46: *           Unchanged on exit.
   47: *
   48: *  ALPHA    (input) COMPLEX*16
   49: *           On entry, ALPHA specifies the scalar alpha.
   50: *           Unchanged on exit.
   51: *
   52: *  X        (input) COMPLEX*16 array, dimension at least
   53: *           ( 1 + ( N - 1 )*abs( INCX ) ).
   54: *           Before entry, the incremented array X must contain the N-
   55: *           element vector x.
   56: *           Unchanged on exit.
   57: *
   58: *  INCX     (input) INTEGER
   59: *           On entry, INCX specifies the increment for the elements of
   60: *           X. INCX must not be zero.
   61: *           Unchanged on exit.
   62: *
   63: *  A        (input/output) COMPLEX*16 array, dimension ( LDA, N )
   64: *           Before entry, with  UPLO = 'U' or 'u', the leading n by n
   65: *           upper triangular part of the array A must contain the upper
   66: *           triangular part of the symmetric matrix and the strictly
   67: *           lower triangular part of A is not referenced. On exit, the
   68: *           upper triangular part of the array A is overwritten by the
   69: *           upper triangular part of the updated matrix.
   70: *           Before entry, with UPLO = 'L' or 'l', the leading n by n
   71: *           lower triangular part of the array A must contain the lower
   72: *           triangular part of the symmetric matrix and the strictly
   73: *           upper triangular part of A is not referenced. On exit, the
   74: *           lower triangular part of the array A is overwritten by the
   75: *           lower triangular part of the updated matrix.
   76: *
   77: *  LDA      (input) INTEGER
   78: *           On entry, LDA specifies the first dimension of A as declared
   79: *           in the calling (sub) program. LDA must be at least
   80: *           max( 1, N ).
   81: *           Unchanged on exit.
   82: *
   83: * =====================================================================
   84: *
   85: *     .. Parameters ..
   86:       COMPLEX*16         ZERO
   87:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
   88: *     ..
   89: *     .. Local Scalars ..
   90:       INTEGER            I, INFO, IX, J, JX, KX
   91:       COMPLEX*16         TEMP
   92: *     ..
   93: *     .. External Functions ..
   94:       LOGICAL            LSAME
   95:       EXTERNAL           LSAME
   96: *     ..
   97: *     .. External Subroutines ..
   98:       EXTERNAL           XERBLA
   99: *     ..
  100: *     .. Intrinsic Functions ..
  101:       INTRINSIC          MAX
  102: *     ..
  103: *     .. Executable Statements ..
  104: *
  105: *     Test the input parameters.
  106: *
  107:       INFO = 0
  108:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  109:          INFO = 1
  110:       ELSE IF( N.LT.0 ) THEN
  111:          INFO = 2
  112:       ELSE IF( INCX.EQ.0 ) THEN
  113:          INFO = 5
  114:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  115:          INFO = 7
  116:       END IF
  117:       IF( INFO.NE.0 ) THEN
  118:          CALL XERBLA( 'ZSYR  ', INFO )
  119:          RETURN
  120:       END IF
  121: *
  122: *     Quick return if possible.
  123: *
  124:       IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
  125:      $   RETURN
  126: *
  127: *     Set the start point in X if the increment is not unity.
  128: *
  129:       IF( INCX.LE.0 ) THEN
  130:          KX = 1 - ( N-1 )*INCX
  131:       ELSE IF( INCX.NE.1 ) THEN
  132:          KX = 1
  133:       END IF
  134: *
  135: *     Start the operations. In this version the elements of A are
  136: *     accessed sequentially with one pass through the triangular part
  137: *     of A.
  138: *
  139:       IF( LSAME( UPLO, 'U' ) ) THEN
  140: *
  141: *        Form  A  when A is stored in upper triangle.
  142: *
  143:          IF( INCX.EQ.1 ) THEN
  144:             DO 20 J = 1, N
  145:                IF( X( J ).NE.ZERO ) THEN
  146:                   TEMP = ALPHA*X( J )
  147:                   DO 10 I = 1, J
  148:                      A( I, J ) = A( I, J ) + X( I )*TEMP
  149:    10             CONTINUE
  150:                END IF
  151:    20       CONTINUE
  152:          ELSE
  153:             JX = KX
  154:             DO 40 J = 1, N
  155:                IF( X( JX ).NE.ZERO ) THEN
  156:                   TEMP = ALPHA*X( JX )
  157:                   IX = KX
  158:                   DO 30 I = 1, J
  159:                      A( I, J ) = A( I, J ) + X( IX )*TEMP
  160:                      IX = IX + INCX
  161:    30             CONTINUE
  162:                END IF
  163:                JX = JX + INCX
  164:    40       CONTINUE
  165:          END IF
  166:       ELSE
  167: *
  168: *        Form  A  when A is stored in lower triangle.
  169: *
  170:          IF( INCX.EQ.1 ) THEN
  171:             DO 60 J = 1, N
  172:                IF( X( J ).NE.ZERO ) THEN
  173:                   TEMP = ALPHA*X( J )
  174:                   DO 50 I = J, N
  175:                      A( I, J ) = A( I, J ) + X( I )*TEMP
  176:    50             CONTINUE
  177:                END IF
  178:    60       CONTINUE
  179:          ELSE
  180:             JX = KX
  181:             DO 80 J = 1, N
  182:                IF( X( JX ).NE.ZERO ) THEN
  183:                   TEMP = ALPHA*X( JX )
  184:                   IX = JX
  185:                   DO 70 I = J, N
  186:                      A( I, J ) = A( I, J ) + X( IX )*TEMP
  187:                      IX = IX + INCX
  188:    70             CONTINUE
  189:                END IF
  190:                JX = JX + INCX
  191:    80       CONTINUE
  192:          END IF
  193:       END IF
  194: *
  195:       RETURN
  196: *
  197: *     End of ZSYR
  198: *
  199:       END

CVSweb interface <joel.bertrand@systella.fr>