Annotation of rpl/lapack/lapack/zsyr.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE ZSYR( UPLO, N, ALPHA, X, INCX, A, LDA )
                      2: *
                      3: *  -- LAPACK auxiliary routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          UPLO
                     10:       INTEGER            INCX, LDA, N
                     11:       COMPLEX*16         ALPHA
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       COMPLEX*16         A( LDA, * ), X( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  ZSYR   performs the symmetric rank 1 operation
                     21: *
                     22: *     A := alpha*x*( x' ) + A,
                     23: *
                     24: *  where alpha is a complex scalar, x is an n element vector and A is an
                     25: *  n by n symmetric matrix.
                     26: *
                     27: *  Arguments
                     28: *  ==========
                     29: *
                     30: *  UPLO     (input) CHARACTER*1
                     31: *           On entry, UPLO specifies whether the upper or lower
                     32: *           triangular part of the array A is to be referenced as
                     33: *           follows:
                     34: *
                     35: *              UPLO = 'U' or 'u'   Only the upper triangular part of A
                     36: *                                  is to be referenced.
                     37: *
                     38: *              UPLO = 'L' or 'l'   Only the lower triangular part of A
                     39: *                                  is to be referenced.
                     40: *
                     41: *           Unchanged on exit.
                     42: *
                     43: *  N        (input) INTEGER
                     44: *           On entry, N specifies the order of the matrix A.
                     45: *           N must be at least zero.
                     46: *           Unchanged on exit.
                     47: *
                     48: *  ALPHA    (input) COMPLEX*16
                     49: *           On entry, ALPHA specifies the scalar alpha.
                     50: *           Unchanged on exit.
                     51: *
                     52: *  X        (input) COMPLEX*16 array, dimension at least
                     53: *           ( 1 + ( N - 1 )*abs( INCX ) ).
                     54: *           Before entry, the incremented array X must contain the N-
                     55: *           element vector x.
                     56: *           Unchanged on exit.
                     57: *
                     58: *  INCX     (input) INTEGER
                     59: *           On entry, INCX specifies the increment for the elements of
                     60: *           X. INCX must not be zero.
                     61: *           Unchanged on exit.
                     62: *
                     63: *  A        (input/output) COMPLEX*16 array, dimension ( LDA, N )
                     64: *           Before entry, with  UPLO = 'U' or 'u', the leading n by n
                     65: *           upper triangular part of the array A must contain the upper
                     66: *           triangular part of the symmetric matrix and the strictly
                     67: *           lower triangular part of A is not referenced. On exit, the
                     68: *           upper triangular part of the array A is overwritten by the
                     69: *           upper triangular part of the updated matrix.
                     70: *           Before entry, with UPLO = 'L' or 'l', the leading n by n
                     71: *           lower triangular part of the array A must contain the lower
                     72: *           triangular part of the symmetric matrix and the strictly
                     73: *           upper triangular part of A is not referenced. On exit, the
                     74: *           lower triangular part of the array A is overwritten by the
                     75: *           lower triangular part of the updated matrix.
                     76: *
                     77: *  LDA      (input) INTEGER
                     78: *           On entry, LDA specifies the first dimension of A as declared
                     79: *           in the calling (sub) program. LDA must be at least
                     80: *           max( 1, N ).
                     81: *           Unchanged on exit.
                     82: *
                     83: * =====================================================================
                     84: *
                     85: *     .. Parameters ..
                     86:       COMPLEX*16         ZERO
                     87:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
                     88: *     ..
                     89: *     .. Local Scalars ..
                     90:       INTEGER            I, INFO, IX, J, JX, KX
                     91:       COMPLEX*16         TEMP
                     92: *     ..
                     93: *     .. External Functions ..
                     94:       LOGICAL            LSAME
                     95:       EXTERNAL           LSAME
                     96: *     ..
                     97: *     .. External Subroutines ..
                     98:       EXTERNAL           XERBLA
                     99: *     ..
                    100: *     .. Intrinsic Functions ..
                    101:       INTRINSIC          MAX
                    102: *     ..
                    103: *     .. Executable Statements ..
                    104: *
                    105: *     Test the input parameters.
                    106: *
                    107:       INFO = 0
                    108:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    109:          INFO = 1
                    110:       ELSE IF( N.LT.0 ) THEN
                    111:          INFO = 2
                    112:       ELSE IF( INCX.EQ.0 ) THEN
                    113:          INFO = 5
                    114:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    115:          INFO = 7
                    116:       END IF
                    117:       IF( INFO.NE.0 ) THEN
                    118:          CALL XERBLA( 'ZSYR  ', INFO )
                    119:          RETURN
                    120:       END IF
                    121: *
                    122: *     Quick return if possible.
                    123: *
                    124:       IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
                    125:      $   RETURN
                    126: *
                    127: *     Set the start point in X if the increment is not unity.
                    128: *
                    129:       IF( INCX.LE.0 ) THEN
                    130:          KX = 1 - ( N-1 )*INCX
                    131:       ELSE IF( INCX.NE.1 ) THEN
                    132:          KX = 1
                    133:       END IF
                    134: *
                    135: *     Start the operations. In this version the elements of A are
                    136: *     accessed sequentially with one pass through the triangular part
                    137: *     of A.
                    138: *
                    139:       IF( LSAME( UPLO, 'U' ) ) THEN
                    140: *
                    141: *        Form  A  when A is stored in upper triangle.
                    142: *
                    143:          IF( INCX.EQ.1 ) THEN
                    144:             DO 20 J = 1, N
                    145:                IF( X( J ).NE.ZERO ) THEN
                    146:                   TEMP = ALPHA*X( J )
                    147:                   DO 10 I = 1, J
                    148:                      A( I, J ) = A( I, J ) + X( I )*TEMP
                    149:    10             CONTINUE
                    150:                END IF
                    151:    20       CONTINUE
                    152:          ELSE
                    153:             JX = KX
                    154:             DO 40 J = 1, N
                    155:                IF( X( JX ).NE.ZERO ) THEN
                    156:                   TEMP = ALPHA*X( JX )
                    157:                   IX = KX
                    158:                   DO 30 I = 1, J
                    159:                      A( I, J ) = A( I, J ) + X( IX )*TEMP
                    160:                      IX = IX + INCX
                    161:    30             CONTINUE
                    162:                END IF
                    163:                JX = JX + INCX
                    164:    40       CONTINUE
                    165:          END IF
                    166:       ELSE
                    167: *
                    168: *        Form  A  when A is stored in lower triangle.
                    169: *
                    170:          IF( INCX.EQ.1 ) THEN
                    171:             DO 60 J = 1, N
                    172:                IF( X( J ).NE.ZERO ) THEN
                    173:                   TEMP = ALPHA*X( J )
                    174:                   DO 50 I = J, N
                    175:                      A( I, J ) = A( I, J ) + X( I )*TEMP
                    176:    50             CONTINUE
                    177:                END IF
                    178:    60       CONTINUE
                    179:          ELSE
                    180:             JX = KX
                    181:             DO 80 J = 1, N
                    182:                IF( X( JX ).NE.ZERO ) THEN
                    183:                   TEMP = ALPHA*X( JX )
                    184:                   IX = JX
                    185:                   DO 70 I = J, N
                    186:                      A( I, J ) = A( I, J ) + X( IX )*TEMP
                    187:                      IX = IX + INCX
                    188:    70             CONTINUE
                    189:                END IF
                    190:                JX = JX + INCX
                    191:    80       CONTINUE
                    192:          END IF
                    193:       END IF
                    194: *
                    195:       RETURN
                    196: *
                    197: *     End of ZSYR
                    198: *
                    199:       END

CVSweb interface <joel.bertrand@systella.fr>