File:  [local] / rpl / lapack / lapack / zsymv.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:29:01 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INCX, INCY, LDA, N
   11:       COMPLEX*16         ALPHA, BETA
   12: *     ..
   13: *     .. Array Arguments ..
   14:       COMPLEX*16         A( LDA, * ), X( * ), Y( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZSYMV  performs the matrix-vector  operation
   21: *
   22: *     y := alpha*A*x + beta*y,
   23: *
   24: *  where alpha and beta are scalars, x and y are n element vectors and
   25: *  A is an n by n symmetric matrix.
   26: *
   27: *  Arguments
   28: *  ==========
   29: *
   30: *  UPLO     (input) CHARACTER*1
   31: *           On entry, UPLO specifies whether the upper or lower
   32: *           triangular part of the array A is to be referenced as
   33: *           follows:
   34: *
   35: *              UPLO = 'U' or 'u'   Only the upper triangular part of A
   36: *                                  is to be referenced.
   37: *
   38: *              UPLO = 'L' or 'l'   Only the lower triangular part of A
   39: *                                  is to be referenced.
   40: *
   41: *           Unchanged on exit.
   42: *
   43: *  N        (input) INTEGER
   44: *           On entry, N specifies the order of the matrix A.
   45: *           N must be at least zero.
   46: *           Unchanged on exit.
   47: *
   48: *  ALPHA    (input) COMPLEX*16
   49: *           On entry, ALPHA specifies the scalar alpha.
   50: *           Unchanged on exit.
   51: *
   52: *  A        (input) COMPLEX*16 array, dimension ( LDA, N )
   53: *           Before entry, with  UPLO = 'U' or 'u', the leading n by n
   54: *           upper triangular part of the array A must contain the upper
   55: *           triangular part of the symmetric matrix and the strictly
   56: *           lower triangular part of A is not referenced.
   57: *           Before entry, with UPLO = 'L' or 'l', the leading n by n
   58: *           lower triangular part of the array A must contain the lower
   59: *           triangular part of the symmetric matrix and the strictly
   60: *           upper triangular part of A is not referenced.
   61: *           Unchanged on exit.
   62: *
   63: *  LDA      (input) INTEGER
   64: *           On entry, LDA specifies the first dimension of A as declared
   65: *           in the calling (sub) program. LDA must be at least
   66: *           max( 1, N ).
   67: *           Unchanged on exit.
   68: *
   69: *  X        (input) COMPLEX*16 array, dimension at least
   70: *           ( 1 + ( N - 1 )*abs( INCX ) ).
   71: *           Before entry, the incremented array X must contain the N-
   72: *           element vector x.
   73: *           Unchanged on exit.
   74: *
   75: *  INCX     (input) INTEGER
   76: *           On entry, INCX specifies the increment for the elements of
   77: *           X. INCX must not be zero.
   78: *           Unchanged on exit.
   79: *
   80: *  BETA     (input) COMPLEX*16
   81: *           On entry, BETA specifies the scalar beta. When BETA is
   82: *           supplied as zero then Y need not be set on input.
   83: *           Unchanged on exit.
   84: *
   85: *  Y        (input/output) COMPLEX*16 array, dimension at least
   86: *           ( 1 + ( N - 1 )*abs( INCY ) ).
   87: *           Before entry, the incremented array Y must contain the n
   88: *           element vector y. On exit, Y is overwritten by the updated
   89: *           vector y.
   90: *
   91: *  INCY     (input) INTEGER
   92: *           On entry, INCY specifies the increment for the elements of
   93: *           Y. INCY must not be zero.
   94: *           Unchanged on exit.
   95: *
   96: * =====================================================================
   97: *
   98: *     .. Parameters ..
   99:       COMPLEX*16         ONE
  100:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  101:       COMPLEX*16         ZERO
  102:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  103: *     ..
  104: *     .. Local Scalars ..
  105:       INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
  106:       COMPLEX*16         TEMP1, TEMP2
  107: *     ..
  108: *     .. External Functions ..
  109:       LOGICAL            LSAME
  110:       EXTERNAL           LSAME
  111: *     ..
  112: *     .. External Subroutines ..
  113:       EXTERNAL           XERBLA
  114: *     ..
  115: *     .. Intrinsic Functions ..
  116:       INTRINSIC          MAX
  117: *     ..
  118: *     .. Executable Statements ..
  119: *
  120: *     Test the input parameters.
  121: *
  122:       INFO = 0
  123:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  124:          INFO = 1
  125:       ELSE IF( N.LT.0 ) THEN
  126:          INFO = 2
  127:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  128:          INFO = 5
  129:       ELSE IF( INCX.EQ.0 ) THEN
  130:          INFO = 7
  131:       ELSE IF( INCY.EQ.0 ) THEN
  132:          INFO = 10
  133:       END IF
  134:       IF( INFO.NE.0 ) THEN
  135:          CALL XERBLA( 'ZSYMV ', INFO )
  136:          RETURN
  137:       END IF
  138: *
  139: *     Quick return if possible.
  140: *
  141:       IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
  142:      $   RETURN
  143: *
  144: *     Set up the start points in  X  and  Y.
  145: *
  146:       IF( INCX.GT.0 ) THEN
  147:          KX = 1
  148:       ELSE
  149:          KX = 1 - ( N-1 )*INCX
  150:       END IF
  151:       IF( INCY.GT.0 ) THEN
  152:          KY = 1
  153:       ELSE
  154:          KY = 1 - ( N-1 )*INCY
  155:       END IF
  156: *
  157: *     Start the operations. In this version the elements of A are
  158: *     accessed sequentially with one pass through the triangular part
  159: *     of A.
  160: *
  161: *     First form  y := beta*y.
  162: *
  163:       IF( BETA.NE.ONE ) THEN
  164:          IF( INCY.EQ.1 ) THEN
  165:             IF( BETA.EQ.ZERO ) THEN
  166:                DO 10 I = 1, N
  167:                   Y( I ) = ZERO
  168:    10          CONTINUE
  169:             ELSE
  170:                DO 20 I = 1, N
  171:                   Y( I ) = BETA*Y( I )
  172:    20          CONTINUE
  173:             END IF
  174:          ELSE
  175:             IY = KY
  176:             IF( BETA.EQ.ZERO ) THEN
  177:                DO 30 I = 1, N
  178:                   Y( IY ) = ZERO
  179:                   IY = IY + INCY
  180:    30          CONTINUE
  181:             ELSE
  182:                DO 40 I = 1, N
  183:                   Y( IY ) = BETA*Y( IY )
  184:                   IY = IY + INCY
  185:    40          CONTINUE
  186:             END IF
  187:          END IF
  188:       END IF
  189:       IF( ALPHA.EQ.ZERO )
  190:      $   RETURN
  191:       IF( LSAME( UPLO, 'U' ) ) THEN
  192: *
  193: *        Form  y  when A is stored in upper triangle.
  194: *
  195:          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  196:             DO 60 J = 1, N
  197:                TEMP1 = ALPHA*X( J )
  198:                TEMP2 = ZERO
  199:                DO 50 I = 1, J - 1
  200:                   Y( I ) = Y( I ) + TEMP1*A( I, J )
  201:                   TEMP2 = TEMP2 + A( I, J )*X( I )
  202:    50          CONTINUE
  203:                Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
  204:    60       CONTINUE
  205:          ELSE
  206:             JX = KX
  207:             JY = KY
  208:             DO 80 J = 1, N
  209:                TEMP1 = ALPHA*X( JX )
  210:                TEMP2 = ZERO
  211:                IX = KX
  212:                IY = KY
  213:                DO 70 I = 1, J - 1
  214:                   Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  215:                   TEMP2 = TEMP2 + A( I, J )*X( IX )
  216:                   IX = IX + INCX
  217:                   IY = IY + INCY
  218:    70          CONTINUE
  219:                Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
  220:                JX = JX + INCX
  221:                JY = JY + INCY
  222:    80       CONTINUE
  223:          END IF
  224:       ELSE
  225: *
  226: *        Form  y  when A is stored in lower triangle.
  227: *
  228:          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  229:             DO 100 J = 1, N
  230:                TEMP1 = ALPHA*X( J )
  231:                TEMP2 = ZERO
  232:                Y( J ) = Y( J ) + TEMP1*A( J, J )
  233:                DO 90 I = J + 1, N
  234:                   Y( I ) = Y( I ) + TEMP1*A( I, J )
  235:                   TEMP2 = TEMP2 + A( I, J )*X( I )
  236:    90          CONTINUE
  237:                Y( J ) = Y( J ) + ALPHA*TEMP2
  238:   100       CONTINUE
  239:          ELSE
  240:             JX = KX
  241:             JY = KY
  242:             DO 120 J = 1, N
  243:                TEMP1 = ALPHA*X( JX )
  244:                TEMP2 = ZERO
  245:                Y( JY ) = Y( JY ) + TEMP1*A( J, J )
  246:                IX = JX
  247:                IY = JY
  248:                DO 110 I = J + 1, N
  249:                   IX = IX + INCX
  250:                   IY = IY + INCY
  251:                   Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  252:                   TEMP2 = TEMP2 + A( I, J )*X( IX )
  253:   110          CONTINUE
  254:                Y( JY ) = Y( JY ) + ALPHA*TEMP2
  255:                JX = JX + INCX
  256:                JY = JY + INCY
  257:   120       CONTINUE
  258:          END IF
  259:       END IF
  260: *
  261:       RETURN
  262: *
  263: *     End of ZSYMV
  264: *
  265:       END

CVSweb interface <joel.bertrand@systella.fr>