File:  [local] / rpl / lapack / lapack / zsymv.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:36 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZSYMV computes a matrix-vector product for a complex symmetric matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYMV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsymv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsymv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsymv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INCX, INCY, LDA, N
   26: *       COMPLEX*16         ALPHA, BETA
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * ), X( * ), Y( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSYMV  performs the matrix-vector  operation
   39: *>
   40: *>    y := alpha*A*x + beta*y,
   41: *>
   42: *> where alpha and beta are scalars, x and y are n element vectors and
   43: *> A is an n by n symmetric matrix.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>           On entry, UPLO specifies whether the upper or lower
   53: *>           triangular part of the array A is to be referenced as
   54: *>           follows:
   55: *>
   56: *>              UPLO = 'U' or 'u'   Only the upper triangular part of A
   57: *>                                  is to be referenced.
   58: *>
   59: *>              UPLO = 'L' or 'l'   Only the lower triangular part of A
   60: *>                                  is to be referenced.
   61: *>
   62: *>           Unchanged on exit.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>           On entry, N specifies the order of the matrix A.
   69: *>           N must be at least zero.
   70: *>           Unchanged on exit.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] ALPHA
   74: *> \verbatim
   75: *>          ALPHA is COMPLEX*16
   76: *>           On entry, ALPHA specifies the scalar alpha.
   77: *>           Unchanged on exit.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] A
   81: *> \verbatim
   82: *>          A is COMPLEX*16 array, dimension ( LDA, N )
   83: *>           Before entry, with  UPLO = 'U' or 'u', the leading n by n
   84: *>           upper triangular part of the array A must contain the upper
   85: *>           triangular part of the symmetric matrix and the strictly
   86: *>           lower triangular part of A is not referenced.
   87: *>           Before entry, with UPLO = 'L' or 'l', the leading n by n
   88: *>           lower triangular part of the array A must contain the lower
   89: *>           triangular part of the symmetric matrix and the strictly
   90: *>           upper triangular part of A is not referenced.
   91: *>           Unchanged on exit.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDA
   95: *> \verbatim
   96: *>          LDA is INTEGER
   97: *>           On entry, LDA specifies the first dimension of A as declared
   98: *>           in the calling (sub) program. LDA must be at least
   99: *>           max( 1, N ).
  100: *>           Unchanged on exit.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] X
  104: *> \verbatim
  105: *>          X is COMPLEX*16 array, dimension at least
  106: *>           ( 1 + ( N - 1 )*abs( INCX ) ).
  107: *>           Before entry, the incremented array X must contain the N-
  108: *>           element vector x.
  109: *>           Unchanged on exit.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] INCX
  113: *> \verbatim
  114: *>          INCX is INTEGER
  115: *>           On entry, INCX specifies the increment for the elements of
  116: *>           X. INCX must not be zero.
  117: *>           Unchanged on exit.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] BETA
  121: *> \verbatim
  122: *>          BETA is COMPLEX*16
  123: *>           On entry, BETA specifies the scalar beta. When BETA is
  124: *>           supplied as zero then Y need not be set on input.
  125: *>           Unchanged on exit.
  126: *> \endverbatim
  127: *>
  128: *> \param[in,out] Y
  129: *> \verbatim
  130: *>          Y is COMPLEX*16 array, dimension at least
  131: *>           ( 1 + ( N - 1 )*abs( INCY ) ).
  132: *>           Before entry, the incremented array Y must contain the n
  133: *>           element vector y. On exit, Y is overwritten by the updated
  134: *>           vector y.
  135: *> \endverbatim
  136: *>
  137: *> \param[in] INCY
  138: *> \verbatim
  139: *>          INCY is INTEGER
  140: *>           On entry, INCY specifies the increment for the elements of
  141: *>           Y. INCY must not be zero.
  142: *>           Unchanged on exit.
  143: *> \endverbatim
  144: *
  145: *  Authors:
  146: *  ========
  147: *
  148: *> \author Univ. of Tennessee
  149: *> \author Univ. of California Berkeley
  150: *> \author Univ. of Colorado Denver
  151: *> \author NAG Ltd.
  152: *
  153: *> \date December 2016
  154: *
  155: *> \ingroup complex16SYauxiliary
  156: *
  157: *  =====================================================================
  158:       SUBROUTINE ZSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
  159: *
  160: *  -- LAPACK auxiliary routine (version 3.7.0) --
  161: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  162: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163: *     December 2016
  164: *
  165: *     .. Scalar Arguments ..
  166:       CHARACTER          UPLO
  167:       INTEGER            INCX, INCY, LDA, N
  168:       COMPLEX*16         ALPHA, BETA
  169: *     ..
  170: *     .. Array Arguments ..
  171:       COMPLEX*16         A( LDA, * ), X( * ), Y( * )
  172: *     ..
  173: *
  174: * =====================================================================
  175: *
  176: *     .. Parameters ..
  177:       COMPLEX*16         ONE
  178:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  179:       COMPLEX*16         ZERO
  180:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  181: *     ..
  182: *     .. Local Scalars ..
  183:       INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
  184:       COMPLEX*16         TEMP1, TEMP2
  185: *     ..
  186: *     .. External Functions ..
  187:       LOGICAL            LSAME
  188:       EXTERNAL           LSAME
  189: *     ..
  190: *     .. External Subroutines ..
  191:       EXTERNAL           XERBLA
  192: *     ..
  193: *     .. Intrinsic Functions ..
  194:       INTRINSIC          MAX
  195: *     ..
  196: *     .. Executable Statements ..
  197: *
  198: *     Test the input parameters.
  199: *
  200:       INFO = 0
  201:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  202:          INFO = 1
  203:       ELSE IF( N.LT.0 ) THEN
  204:          INFO = 2
  205:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  206:          INFO = 5
  207:       ELSE IF( INCX.EQ.0 ) THEN
  208:          INFO = 7
  209:       ELSE IF( INCY.EQ.0 ) THEN
  210:          INFO = 10
  211:       END IF
  212:       IF( INFO.NE.0 ) THEN
  213:          CALL XERBLA( 'ZSYMV ', INFO )
  214:          RETURN
  215:       END IF
  216: *
  217: *     Quick return if possible.
  218: *
  219:       IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
  220:      $   RETURN
  221: *
  222: *     Set up the start points in  X  and  Y.
  223: *
  224:       IF( INCX.GT.0 ) THEN
  225:          KX = 1
  226:       ELSE
  227:          KX = 1 - ( N-1 )*INCX
  228:       END IF
  229:       IF( INCY.GT.0 ) THEN
  230:          KY = 1
  231:       ELSE
  232:          KY = 1 - ( N-1 )*INCY
  233:       END IF
  234: *
  235: *     Start the operations. In this version the elements of A are
  236: *     accessed sequentially with one pass through the triangular part
  237: *     of A.
  238: *
  239: *     First form  y := beta*y.
  240: *
  241:       IF( BETA.NE.ONE ) THEN
  242:          IF( INCY.EQ.1 ) THEN
  243:             IF( BETA.EQ.ZERO ) THEN
  244:                DO 10 I = 1, N
  245:                   Y( I ) = ZERO
  246:    10          CONTINUE
  247:             ELSE
  248:                DO 20 I = 1, N
  249:                   Y( I ) = BETA*Y( I )
  250:    20          CONTINUE
  251:             END IF
  252:          ELSE
  253:             IY = KY
  254:             IF( BETA.EQ.ZERO ) THEN
  255:                DO 30 I = 1, N
  256:                   Y( IY ) = ZERO
  257:                   IY = IY + INCY
  258:    30          CONTINUE
  259:             ELSE
  260:                DO 40 I = 1, N
  261:                   Y( IY ) = BETA*Y( IY )
  262:                   IY = IY + INCY
  263:    40          CONTINUE
  264:             END IF
  265:          END IF
  266:       END IF
  267:       IF( ALPHA.EQ.ZERO )
  268:      $   RETURN
  269:       IF( LSAME( UPLO, 'U' ) ) THEN
  270: *
  271: *        Form  y  when A is stored in upper triangle.
  272: *
  273:          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  274:             DO 60 J = 1, N
  275:                TEMP1 = ALPHA*X( J )
  276:                TEMP2 = ZERO
  277:                DO 50 I = 1, J - 1
  278:                   Y( I ) = Y( I ) + TEMP1*A( I, J )
  279:                   TEMP2 = TEMP2 + A( I, J )*X( I )
  280:    50          CONTINUE
  281:                Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
  282:    60       CONTINUE
  283:          ELSE
  284:             JX = KX
  285:             JY = KY
  286:             DO 80 J = 1, N
  287:                TEMP1 = ALPHA*X( JX )
  288:                TEMP2 = ZERO
  289:                IX = KX
  290:                IY = KY
  291:                DO 70 I = 1, J - 1
  292:                   Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  293:                   TEMP2 = TEMP2 + A( I, J )*X( IX )
  294:                   IX = IX + INCX
  295:                   IY = IY + INCY
  296:    70          CONTINUE
  297:                Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
  298:                JX = JX + INCX
  299:                JY = JY + INCY
  300:    80       CONTINUE
  301:          END IF
  302:       ELSE
  303: *
  304: *        Form  y  when A is stored in lower triangle.
  305: *
  306:          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  307:             DO 100 J = 1, N
  308:                TEMP1 = ALPHA*X( J )
  309:                TEMP2 = ZERO
  310:                Y( J ) = Y( J ) + TEMP1*A( J, J )
  311:                DO 90 I = J + 1, N
  312:                   Y( I ) = Y( I ) + TEMP1*A( I, J )
  313:                   TEMP2 = TEMP2 + A( I, J )*X( I )
  314:    90          CONTINUE
  315:                Y( J ) = Y( J ) + ALPHA*TEMP2
  316:   100       CONTINUE
  317:          ELSE
  318:             JX = KX
  319:             JY = KY
  320:             DO 120 J = 1, N
  321:                TEMP1 = ALPHA*X( JX )
  322:                TEMP2 = ZERO
  323:                Y( JY ) = Y( JY ) + TEMP1*A( J, J )
  324:                IX = JX
  325:                IY = JY
  326:                DO 110 I = J + 1, N
  327:                   IX = IX + INCX
  328:                   IY = IY + INCY
  329:                   Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  330:                   TEMP2 = TEMP2 + A( I, J )*X( IX )
  331:   110          CONTINUE
  332:                Y( JY ) = Y( JY ) + ALPHA*TEMP2
  333:                JX = JX + INCX
  334:                JY = JY + INCY
  335:   120       CONTINUE
  336:          END IF
  337:       END IF
  338: *
  339:       RETURN
  340: *
  341: *     End of ZSYMV
  342: *
  343:       END

CVSweb interface <joel.bertrand@systella.fr>