Annotation of rpl/lapack/lapack/zsymv.f, revision 1.16

1.11      bertrand    1: *> \brief \b ZSYMV computes a matrix-vector product for a complex symmetric matrix.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZSYMV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsymv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsymv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsymv.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
1.15      bertrand   22: *
1.8       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INCX, INCY, LDA, N
                     26: *       COMPLEX*16         ALPHA, BETA
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       COMPLEX*16         A( LDA, * ), X( * ), Y( * )
                     30: *       ..
1.15      bertrand   31: *
1.8       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZSYMV  performs the matrix-vector  operation
                     39: *>
                     40: *>    y := alpha*A*x + beta*y,
                     41: *>
                     42: *> where alpha and beta are scalars, x and y are n element vectors and
                     43: *> A is an n by n symmetric matrix.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] UPLO
                     50: *> \verbatim
                     51: *>          UPLO is CHARACTER*1
                     52: *>           On entry, UPLO specifies whether the upper or lower
                     53: *>           triangular part of the array A is to be referenced as
                     54: *>           follows:
                     55: *>
                     56: *>              UPLO = 'U' or 'u'   Only the upper triangular part of A
                     57: *>                                  is to be referenced.
                     58: *>
                     59: *>              UPLO = 'L' or 'l'   Only the lower triangular part of A
                     60: *>                                  is to be referenced.
                     61: *>
                     62: *>           Unchanged on exit.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] N
                     66: *> \verbatim
                     67: *>          N is INTEGER
                     68: *>           On entry, N specifies the order of the matrix A.
                     69: *>           N must be at least zero.
                     70: *>           Unchanged on exit.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] ALPHA
                     74: *> \verbatim
                     75: *>          ALPHA is COMPLEX*16
                     76: *>           On entry, ALPHA specifies the scalar alpha.
                     77: *>           Unchanged on exit.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] A
                     81: *> \verbatim
                     82: *>          A is COMPLEX*16 array, dimension ( LDA, N )
                     83: *>           Before entry, with  UPLO = 'U' or 'u', the leading n by n
                     84: *>           upper triangular part of the array A must contain the upper
                     85: *>           triangular part of the symmetric matrix and the strictly
                     86: *>           lower triangular part of A is not referenced.
                     87: *>           Before entry, with UPLO = 'L' or 'l', the leading n by n
                     88: *>           lower triangular part of the array A must contain the lower
                     89: *>           triangular part of the symmetric matrix and the strictly
                     90: *>           upper triangular part of A is not referenced.
                     91: *>           Unchanged on exit.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] LDA
                     95: *> \verbatim
                     96: *>          LDA is INTEGER
                     97: *>           On entry, LDA specifies the first dimension of A as declared
                     98: *>           in the calling (sub) program. LDA must be at least
                     99: *>           max( 1, N ).
                    100: *>           Unchanged on exit.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] X
                    104: *> \verbatim
                    105: *>          X is COMPLEX*16 array, dimension at least
                    106: *>           ( 1 + ( N - 1 )*abs( INCX ) ).
                    107: *>           Before entry, the incremented array X must contain the N-
                    108: *>           element vector x.
                    109: *>           Unchanged on exit.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] INCX
                    113: *> \verbatim
                    114: *>          INCX is INTEGER
                    115: *>           On entry, INCX specifies the increment for the elements of
                    116: *>           X. INCX must not be zero.
                    117: *>           Unchanged on exit.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] BETA
                    121: *> \verbatim
                    122: *>          BETA is COMPLEX*16
                    123: *>           On entry, BETA specifies the scalar beta. When BETA is
                    124: *>           supplied as zero then Y need not be set on input.
                    125: *>           Unchanged on exit.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in,out] Y
                    129: *> \verbatim
                    130: *>          Y is COMPLEX*16 array, dimension at least
                    131: *>           ( 1 + ( N - 1 )*abs( INCY ) ).
                    132: *>           Before entry, the incremented array Y must contain the n
                    133: *>           element vector y. On exit, Y is overwritten by the updated
                    134: *>           vector y.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] INCY
                    138: *> \verbatim
                    139: *>          INCY is INTEGER
                    140: *>           On entry, INCY specifies the increment for the elements of
                    141: *>           Y. INCY must not be zero.
                    142: *>           Unchanged on exit.
                    143: *> \endverbatim
                    144: *
                    145: *  Authors:
                    146: *  ========
                    147: *
1.15      bertrand  148: *> \author Univ. of Tennessee
                    149: *> \author Univ. of California Berkeley
                    150: *> \author Univ. of Colorado Denver
                    151: *> \author NAG Ltd.
1.8       bertrand  152: *
1.15      bertrand  153: *> \date December 2016
1.8       bertrand  154: *
                    155: *> \ingroup complex16SYauxiliary
                    156: *
                    157: *  =====================================================================
1.1       bertrand  158:       SUBROUTINE ZSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
                    159: *
1.15      bertrand  160: *  -- LAPACK auxiliary routine (version 3.7.0) --
1.1       bertrand  161: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    162: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  163: *     December 2016
1.1       bertrand  164: *
                    165: *     .. Scalar Arguments ..
                    166:       CHARACTER          UPLO
                    167:       INTEGER            INCX, INCY, LDA, N
                    168:       COMPLEX*16         ALPHA, BETA
                    169: *     ..
                    170: *     .. Array Arguments ..
                    171:       COMPLEX*16         A( LDA, * ), X( * ), Y( * )
                    172: *     ..
                    173: *
                    174: * =====================================================================
                    175: *
                    176: *     .. Parameters ..
                    177:       COMPLEX*16         ONE
                    178:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    179:       COMPLEX*16         ZERO
                    180:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
                    181: *     ..
                    182: *     .. Local Scalars ..
                    183:       INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
                    184:       COMPLEX*16         TEMP1, TEMP2
                    185: *     ..
                    186: *     .. External Functions ..
                    187:       LOGICAL            LSAME
                    188:       EXTERNAL           LSAME
                    189: *     ..
                    190: *     .. External Subroutines ..
                    191:       EXTERNAL           XERBLA
                    192: *     ..
                    193: *     .. Intrinsic Functions ..
                    194:       INTRINSIC          MAX
                    195: *     ..
                    196: *     .. Executable Statements ..
                    197: *
                    198: *     Test the input parameters.
                    199: *
                    200:       INFO = 0
                    201:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    202:          INFO = 1
                    203:       ELSE IF( N.LT.0 ) THEN
                    204:          INFO = 2
                    205:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    206:          INFO = 5
                    207:       ELSE IF( INCX.EQ.0 ) THEN
                    208:          INFO = 7
                    209:       ELSE IF( INCY.EQ.0 ) THEN
                    210:          INFO = 10
                    211:       END IF
                    212:       IF( INFO.NE.0 ) THEN
                    213:          CALL XERBLA( 'ZSYMV ', INFO )
                    214:          RETURN
                    215:       END IF
                    216: *
                    217: *     Quick return if possible.
                    218: *
                    219:       IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
                    220:      $   RETURN
                    221: *
                    222: *     Set up the start points in  X  and  Y.
                    223: *
                    224:       IF( INCX.GT.0 ) THEN
                    225:          KX = 1
                    226:       ELSE
                    227:          KX = 1 - ( N-1 )*INCX
                    228:       END IF
                    229:       IF( INCY.GT.0 ) THEN
                    230:          KY = 1
                    231:       ELSE
                    232:          KY = 1 - ( N-1 )*INCY
                    233:       END IF
                    234: *
                    235: *     Start the operations. In this version the elements of A are
                    236: *     accessed sequentially with one pass through the triangular part
                    237: *     of A.
                    238: *
                    239: *     First form  y := beta*y.
                    240: *
                    241:       IF( BETA.NE.ONE ) THEN
                    242:          IF( INCY.EQ.1 ) THEN
                    243:             IF( BETA.EQ.ZERO ) THEN
                    244:                DO 10 I = 1, N
                    245:                   Y( I ) = ZERO
                    246:    10          CONTINUE
                    247:             ELSE
                    248:                DO 20 I = 1, N
                    249:                   Y( I ) = BETA*Y( I )
                    250:    20          CONTINUE
                    251:             END IF
                    252:          ELSE
                    253:             IY = KY
                    254:             IF( BETA.EQ.ZERO ) THEN
                    255:                DO 30 I = 1, N
                    256:                   Y( IY ) = ZERO
                    257:                   IY = IY + INCY
                    258:    30          CONTINUE
                    259:             ELSE
                    260:                DO 40 I = 1, N
                    261:                   Y( IY ) = BETA*Y( IY )
                    262:                   IY = IY + INCY
                    263:    40          CONTINUE
                    264:             END IF
                    265:          END IF
                    266:       END IF
                    267:       IF( ALPHA.EQ.ZERO )
                    268:      $   RETURN
                    269:       IF( LSAME( UPLO, 'U' ) ) THEN
                    270: *
                    271: *        Form  y  when A is stored in upper triangle.
                    272: *
                    273:          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
                    274:             DO 60 J = 1, N
                    275:                TEMP1 = ALPHA*X( J )
                    276:                TEMP2 = ZERO
                    277:                DO 50 I = 1, J - 1
                    278:                   Y( I ) = Y( I ) + TEMP1*A( I, J )
                    279:                   TEMP2 = TEMP2 + A( I, J )*X( I )
                    280:    50          CONTINUE
                    281:                Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
                    282:    60       CONTINUE
                    283:          ELSE
                    284:             JX = KX
                    285:             JY = KY
                    286:             DO 80 J = 1, N
                    287:                TEMP1 = ALPHA*X( JX )
                    288:                TEMP2 = ZERO
                    289:                IX = KX
                    290:                IY = KY
                    291:                DO 70 I = 1, J - 1
                    292:                   Y( IY ) = Y( IY ) + TEMP1*A( I, J )
                    293:                   TEMP2 = TEMP2 + A( I, J )*X( IX )
                    294:                   IX = IX + INCX
                    295:                   IY = IY + INCY
                    296:    70          CONTINUE
                    297:                Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
                    298:                JX = JX + INCX
                    299:                JY = JY + INCY
                    300:    80       CONTINUE
                    301:          END IF
                    302:       ELSE
                    303: *
                    304: *        Form  y  when A is stored in lower triangle.
                    305: *
                    306:          IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
                    307:             DO 100 J = 1, N
                    308:                TEMP1 = ALPHA*X( J )
                    309:                TEMP2 = ZERO
                    310:                Y( J ) = Y( J ) + TEMP1*A( J, J )
                    311:                DO 90 I = J + 1, N
                    312:                   Y( I ) = Y( I ) + TEMP1*A( I, J )
                    313:                   TEMP2 = TEMP2 + A( I, J )*X( I )
                    314:    90          CONTINUE
                    315:                Y( J ) = Y( J ) + ALPHA*TEMP2
                    316:   100       CONTINUE
                    317:          ELSE
                    318:             JX = KX
                    319:             JY = KY
                    320:             DO 120 J = 1, N
                    321:                TEMP1 = ALPHA*X( JX )
                    322:                TEMP2 = ZERO
                    323:                Y( JY ) = Y( JY ) + TEMP1*A( J, J )
                    324:                IX = JX
                    325:                IY = JY
                    326:                DO 110 I = J + 1, N
                    327:                   IX = IX + INCX
                    328:                   IY = IY + INCY
                    329:                   Y( IY ) = Y( IY ) + TEMP1*A( I, J )
                    330:                   TEMP2 = TEMP2 + A( I, J )*X( IX )
                    331:   110          CONTINUE
                    332:                Y( JY ) = Y( JY ) + ALPHA*TEMP2
                    333:                JX = JX + INCX
                    334:                JY = JY + INCY
                    335:   120       CONTINUE
                    336:          END IF
                    337:       END IF
                    338: *
                    339:       RETURN
                    340: *
                    341: *     End of ZSYMV
                    342: *
                    343:       END

CVSweb interface <joel.bertrand@systella.fr>