File:  [local] / rpl / lapack / lapack / zsyequb.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:21 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZSYEQUB
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZSYEQUB + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyequb.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyequb.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyequb.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, N
   25: *       DOUBLE PRECISION   AMAX, SCOND
   26: *       CHARACTER          UPLO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * ), WORK( * )
   30: *       DOUBLE PRECISION   S( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZSYEQUB computes row and column scalings intended to equilibrate a
   40: *> symmetric matrix A and reduce its condition number
   41: *> (with respect to the two-norm).  S contains the scale factors,
   42: *> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
   43: *> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
   44: *> choice of S puts the condition number of B within a factor N of the
   45: *> smallest possible condition number over all possible diagonal
   46: *> scalings.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] UPLO
   53: *> \verbatim
   54: *>          UPLO is CHARACTER*1
   55: *>          Specifies whether the details of the factorization are stored
   56: *>          as an upper or lower triangular matrix.
   57: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   58: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] N
   62: *> \verbatim
   63: *>          N is INTEGER
   64: *>          The order of the matrix A.  N >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] A
   68: *> \verbatim
   69: *>          A is COMPLEX*16 array, dimension (LDA,N)
   70: *>          The N-by-N symmetric matrix whose scaling
   71: *>          factors are to be computed.  Only the diagonal elements of A
   72: *>          are referenced.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[out] S
   82: *> \verbatim
   83: *>          S is DOUBLE PRECISION array, dimension (N)
   84: *>          If INFO = 0, S contains the scale factors for A.
   85: *> \endverbatim
   86: *>
   87: *> \param[out] SCOND
   88: *> \verbatim
   89: *>          SCOND is DOUBLE PRECISION
   90: *>          If INFO = 0, S contains the ratio of the smallest S(i) to
   91: *>          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
   92: *>          large nor too small, it is not worth scaling by S.
   93: *> \endverbatim
   94: *>
   95: *> \param[out] AMAX
   96: *> \verbatim
   97: *>          AMAX is DOUBLE PRECISION
   98: *>          Absolute value of largest matrix element.  If AMAX is very
   99: *>          close to overflow or very close to underflow, the matrix
  100: *>          should be scaled.
  101: *> \endverbatim
  102: *>
  103: *> \param[out] WORK
  104: *> \verbatim
  105: *>          WORK is COMPLEX*16 array, dimension (3*N)
  106: *> \endverbatim
  107: *>
  108: *> \param[out] INFO
  109: *> \verbatim
  110: *>          INFO is INTEGER
  111: *>          = 0:  successful exit
  112: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  113: *>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
  114: *> \endverbatim
  115: *
  116: *  Authors:
  117: *  ========
  118: *
  119: *> \author Univ. of Tennessee 
  120: *> \author Univ. of California Berkeley 
  121: *> \author Univ. of Colorado Denver 
  122: *> \author NAG Ltd. 
  123: *
  124: *> \date November 2011
  125: *
  126: *> \ingroup complex16SYcomputational
  127: *
  128: *> \par References:
  129: *  ================
  130: *>
  131: *>  Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
  132: *>  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
  133: *>  DOI 10.1023/B:NUMA.0000016606.32820.69 \n 
  134: *>  Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
  135: *>
  136: *  =====================================================================
  137:       SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  138: *
  139: *  -- LAPACK computational routine (version 3.4.0) --
  140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142: *     November 2011
  143: *
  144: *     .. Scalar Arguments ..
  145:       INTEGER            INFO, LDA, N
  146:       DOUBLE PRECISION   AMAX, SCOND
  147:       CHARACTER          UPLO
  148: *     ..
  149: *     .. Array Arguments ..
  150:       COMPLEX*16         A( LDA, * ), WORK( * )
  151:       DOUBLE PRECISION   S( * )
  152: *     ..
  153: *
  154: *  =====================================================================
  155: *
  156: *     .. Parameters ..
  157:       DOUBLE PRECISION   ONE, ZERO
  158:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
  159:       INTEGER            MAX_ITER
  160:       PARAMETER          ( MAX_ITER = 100 )
  161: *     ..
  162: *     .. Local Scalars ..
  163:       INTEGER            I, J, ITER
  164:       DOUBLE PRECISION   AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
  165:      $                   SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
  166:       LOGICAL            UP
  167:       COMPLEX*16         ZDUM
  168: *     ..
  169: *     .. External Functions ..
  170:       DOUBLE PRECISION   DLAMCH
  171:       LOGICAL            LSAME
  172:       EXTERNAL           DLAMCH, LSAME
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           ZLASSQ
  176: *     ..
  177: *     .. Intrinsic Functions ..
  178:       INTRINSIC          ABS, DBLE, DIMAG, INT, LOG, MAX, MIN, SQRT
  179: *     ..
  180: *     .. Statement Functions ..
  181:       DOUBLE PRECISION   CABS1
  182: *     ..
  183: *     Statement Function Definitions
  184:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  185: *     ..
  186: *     .. Executable Statements ..
  187: *
  188: *     Test the input parameters.
  189: *
  190:       INFO = 0
  191:       IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
  192:         INFO = -1
  193:       ELSE IF ( N .LT. 0 ) THEN
  194:         INFO = -2
  195:       ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
  196:         INFO = -4
  197:       END IF
  198:       IF ( INFO .NE. 0 ) THEN
  199:         CALL XERBLA( 'ZSYEQUB', -INFO )
  200:         RETURN
  201:       END IF
  202: 
  203:       UP = LSAME( UPLO, 'U' )
  204:       AMAX = ZERO
  205: *
  206: *     Quick return if possible.
  207: *
  208:       IF ( N .EQ. 0 ) THEN
  209:         SCOND = ONE
  210:         RETURN
  211:       END IF
  212: 
  213:       DO I = 1, N
  214:         S( I ) = ZERO
  215:       END DO
  216: 
  217:       AMAX = ZERO
  218:       IF ( UP ) THEN
  219:          DO J = 1, N
  220:             DO I = 1, J-1
  221:                S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
  222:                S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
  223:                AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
  224:             END DO
  225:             S( J ) = MAX( S( J ), CABS1( A( J, J) ) )
  226:             AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
  227:          END DO
  228:       ELSE
  229:          DO J = 1, N
  230:             S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
  231:             AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
  232:             DO I = J+1, N
  233:                S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
  234:                S( J ) = MAX( S( J ), CABS1 (A( I, J ) ) )
  235:                AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
  236:             END DO
  237:          END DO
  238:       END IF
  239:       DO J = 1, N
  240:          S( J ) = 1.0D+0 / S( J )
  241:       END DO
  242: 
  243:       TOL = ONE / SQRT( 2.0D0 * N )
  244: 
  245:       DO ITER = 1, MAX_ITER
  246:          SCALE = 0.0D+0
  247:          SUMSQ = 0.0D+0
  248: *       beta = |A|s
  249:         DO I = 1, N
  250:            WORK( I ) = ZERO
  251:         END DO
  252:         IF ( UP ) THEN
  253:            DO J = 1, N
  254:               DO I = 1, J-1
  255:                  T = CABS1( A( I, J ) )
  256:                  WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
  257:                  WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
  258:               END DO
  259:               WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
  260:            END DO
  261:         ELSE
  262:            DO J = 1, N
  263:               WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
  264:               DO I = J+1, N
  265:                  T = CABS1( A( I, J ) )
  266:                  WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
  267:                  WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
  268:               END DO
  269:            END DO
  270:         END IF
  271: 
  272: *       avg = s^T beta / n
  273:         AVG = 0.0D+0
  274:         DO I = 1, N
  275:           AVG = AVG + S( I )*WORK( I )
  276:         END DO
  277:         AVG = AVG / N
  278: 
  279:         STD = 0.0D+0
  280:         DO I = N+1, 2*N
  281:            WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
  282:         END DO
  283:         CALL ZLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
  284:         STD = SCALE * SQRT( SUMSQ / N )
  285: 
  286:         IF ( STD .LT. TOL * AVG ) GOTO 999
  287: 
  288:         DO I = 1, N
  289:           T = CABS1( A( I, I ) )
  290:           SI = S( I )
  291:           C2 = ( N-1 ) * T
  292:           C1 = ( N-2 ) * ( WORK( I ) - T*SI )
  293:           C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
  294:           D = C1*C1 - 4*C0*C2
  295: 
  296:           IF ( D .LE. 0 ) THEN
  297:             INFO = -1
  298:             RETURN
  299:           END IF
  300:           SI = -2*C0 / ( C1 + SQRT( D ) )
  301: 
  302:           D = SI - S( I )
  303:           U = ZERO
  304:           IF ( UP ) THEN
  305:             DO J = 1, I
  306:               T = CABS1( A( J, I ) )
  307:               U = U + S( J )*T
  308:               WORK( J ) = WORK( J ) + D*T
  309:             END DO
  310:             DO J = I+1,N
  311:               T = CABS1( A( I, J ) )
  312:               U = U + S( J )*T
  313:               WORK( J ) = WORK( J ) + D*T
  314:             END DO
  315:           ELSE
  316:             DO J = 1, I
  317:               T = CABS1( A( I, J ) )
  318:               U = U + S( J )*T
  319:               WORK( J ) = WORK( J ) + D*T
  320:             END DO
  321:             DO J = I+1,N
  322:               T = CABS1( A( J, I ) )
  323:               U = U + S( J )*T
  324:               WORK( J ) = WORK( J ) + D*T
  325:             END DO
  326:           END IF
  327:           AVG = AVG + ( U + WORK( I ) ) * D / N
  328:           S( I ) = SI
  329:         END DO
  330:       END DO
  331: 
  332:  999  CONTINUE
  333: 
  334:       SMLNUM = DLAMCH( 'SAFEMIN' )
  335:       BIGNUM = ONE / SMLNUM
  336:       SMIN = BIGNUM
  337:       SMAX = ZERO
  338:       T = ONE / SQRT( AVG )
  339:       BASE = DLAMCH( 'B' )
  340:       U = ONE / LOG( BASE )
  341:       DO I = 1, N
  342:         S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
  343:         SMIN = MIN( SMIN, S( I ) )
  344:         SMAX = MAX( SMAX, S( I ) )
  345:       END DO
  346:       SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  347: *
  348:       END

CVSweb interface <joel.bertrand@systella.fr>