File:  [local] / rpl / lapack / lapack / zsyequb.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:36 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZSYEQUB
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYEQUB + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyequb.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyequb.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyequb.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, N
   25: *       DOUBLE PRECISION   AMAX, SCOND
   26: *       CHARACTER          UPLO
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * ), WORK( * )
   30: *       DOUBLE PRECISION   S( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZSYEQUB computes row and column scalings intended to equilibrate a
   40: *> symmetric matrix A (with respect to the Euclidean norm) and reduce
   41: *> its condition number. The scale factors S are computed by the BIN
   42: *> algorithm (see references) so that the scaled matrix B with elements
   43: *> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
   44: *> the smallest possible condition number over all possible diagonal
   45: *> scalings.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  Upper triangle of A is stored;
   55: *>          = 'L':  Lower triangle of A is stored.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A. N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] A
   65: *> \verbatim
   66: *>          A is COMPLEX*16 array, dimension (LDA,N)
   67: *>          The N-by-N symmetric matrix whose scaling factors are to be
   68: *>          computed.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] LDA
   72: *> \verbatim
   73: *>          LDA is INTEGER
   74: *>          The leading dimension of the array A. LDA >= max(1,N).
   75: *> \endverbatim
   76: *>
   77: *> \param[out] S
   78: *> \verbatim
   79: *>          S is DOUBLE PRECISION array, dimension (N)
   80: *>          If INFO = 0, S contains the scale factors for A.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] SCOND
   84: *> \verbatim
   85: *>          SCOND is DOUBLE PRECISION
   86: *>          If INFO = 0, S contains the ratio of the smallest S(i) to
   87: *>          the largest S(i). If SCOND >= 0.1 and AMAX is neither too
   88: *>          large nor too small, it is not worth scaling by S.
   89: *> \endverbatim
   90: *>
   91: *> \param[out] AMAX
   92: *> \verbatim
   93: *>          AMAX is DOUBLE PRECISION
   94: *>          Largest absolute value of any matrix element. If AMAX is
   95: *>          very close to overflow or very close to underflow, the
   96: *>          matrix should be scaled.
   97: *> \endverbatim
   98: *>
   99: *> \param[out] WORK
  100: *> \verbatim
  101: *>          WORK is COMPLEX*16 array, dimension (2*N)
  102: *> \endverbatim
  103: *>
  104: *> \param[out] INFO
  105: *> \verbatim
  106: *>          INFO is INTEGER
  107: *>          = 0:  successful exit
  108: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  109: *>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
  110: *> \endverbatim
  111: *
  112: *  Authors:
  113: *  ========
  114: *
  115: *> \author Univ. of Tennessee
  116: *> \author Univ. of California Berkeley
  117: *> \author Univ. of Colorado Denver
  118: *> \author NAG Ltd.
  119: *
  120: *> \date November 2017
  121: *
  122: *> \ingroup complex16SYcomputational
  123: *
  124: *> \par References:
  125: *  ================
  126: *>
  127: *>  Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
  128: *>  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
  129: *>  DOI 10.1023/B:NUMA.0000016606.32820.69 \n
  130: *>  Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
  131: *>
  132: *  =====================================================================
  133:       SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  134: *
  135: *  -- LAPACK computational routine (version 3.8.0) --
  136: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  137: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138: *     November 2017
  139: *
  140: *     .. Scalar Arguments ..
  141:       INTEGER            INFO, LDA, N
  142:       DOUBLE PRECISION   AMAX, SCOND
  143:       CHARACTER          UPLO
  144: *     ..
  145: *     .. Array Arguments ..
  146:       COMPLEX*16         A( LDA, * ), WORK( * )
  147:       DOUBLE PRECISION   S( * )
  148: *     ..
  149: *
  150: *  =====================================================================
  151: *
  152: *     .. Parameters ..
  153:       DOUBLE PRECISION   ONE, ZERO
  154:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
  155:       INTEGER            MAX_ITER
  156:       PARAMETER          ( MAX_ITER = 100 )
  157: *     ..
  158: *     .. Local Scalars ..
  159:       INTEGER            I, J, ITER
  160:       DOUBLE PRECISION   AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
  161:      $                   SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
  162:       LOGICAL            UP
  163:       COMPLEX*16         ZDUM
  164: *     ..
  165: *     .. External Functions ..
  166:       DOUBLE PRECISION   DLAMCH
  167:       LOGICAL            LSAME
  168:       EXTERNAL           DLAMCH, LSAME
  169: *     ..
  170: *     .. External Subroutines ..
  171:       EXTERNAL           ZLASSQ, XERBLA
  172: *     ..
  173: *     .. Intrinsic Functions ..
  174:       INTRINSIC          ABS, DBLE, DIMAG, INT, LOG, MAX, MIN, SQRT
  175: *     ..
  176: *     .. Statement Functions ..
  177:       DOUBLE PRECISION   CABS1
  178: *     ..
  179: *     .. Statement Function Definitions ..
  180:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  181: *     ..
  182: *     .. Executable Statements ..
  183: *
  184: *     Test the input parameters.
  185: *
  186:       INFO = 0
  187:       IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
  188:          INFO = -1
  189:       ELSE IF ( N .LT. 0 ) THEN
  190:          INFO = -2
  191:       ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
  192:          INFO = -4
  193:       END IF
  194:       IF ( INFO .NE. 0 ) THEN
  195:          CALL XERBLA( 'ZSYEQUB', -INFO )
  196:          RETURN
  197:       END IF
  198: 
  199:       UP = LSAME( UPLO, 'U' )
  200:       AMAX = ZERO
  201: *
  202: *     Quick return if possible.
  203: *
  204:       IF ( N .EQ. 0 ) THEN
  205:          SCOND = ONE
  206:          RETURN
  207:       END IF
  208: 
  209:       DO I = 1, N
  210:          S( I ) = ZERO
  211:       END DO
  212: 
  213:       AMAX = ZERO
  214:       IF ( UP ) THEN
  215:          DO J = 1, N
  216:             DO I = 1, J-1
  217:                S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
  218:                S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
  219:                AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
  220:             END DO
  221:             S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
  222:             AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
  223:          END DO
  224:       ELSE
  225:          DO J = 1, N
  226:             S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
  227:             AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
  228:             DO I = J+1, N
  229:                S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
  230:                S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
  231:                AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
  232:             END DO
  233:          END DO
  234:       END IF
  235:       DO J = 1, N
  236:          S( J ) = 1.0D0 / S( J )
  237:       END DO
  238: 
  239:       TOL = ONE / SQRT( 2.0D0 * N )
  240: 
  241:       DO ITER = 1, MAX_ITER
  242:          SCALE = 0.0D0
  243:          SUMSQ = 0.0D0
  244: *        beta = |A|s
  245:          DO I = 1, N
  246:             WORK( I ) = ZERO
  247:          END DO
  248:          IF ( UP ) THEN
  249:             DO J = 1, N
  250:                DO I = 1, J-1
  251:                   WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
  252:                   WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
  253:                END DO
  254:                WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
  255:             END DO
  256:          ELSE
  257:             DO J = 1, N
  258:                WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
  259:                DO I = J+1, N
  260:                   WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
  261:                   WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
  262:                END DO
  263:             END DO
  264:          END IF
  265: 
  266: *        avg = s^T beta / n
  267:          AVG = 0.0D0
  268:          DO I = 1, N
  269:             AVG = AVG + S( I )*WORK( I )
  270:          END DO
  271:          AVG = AVG / N
  272: 
  273:          STD = 0.0D0
  274:          DO I = N+1, 2*N
  275:             WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
  276:          END DO
  277:          CALL ZLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
  278:          STD = SCALE * SQRT( SUMSQ / N )
  279: 
  280:          IF ( STD .LT. TOL * AVG ) GOTO 999
  281: 
  282:          DO I = 1, N
  283:             T = CABS1( A( I, I ) )
  284:             SI = S( I )
  285:             C2 = ( N-1 ) * T
  286:             C1 = ( N-2 ) * ( WORK( I ) - T*SI )
  287:             C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
  288:             D = C1*C1 - 4*C0*C2
  289: 
  290:             IF ( D .LE. 0 ) THEN
  291:                INFO = -1
  292:                RETURN
  293:             END IF
  294:             SI = -2*C0 / ( C1 + SQRT( D ) )
  295: 
  296:             D = SI - S( I )
  297:             U = ZERO
  298:             IF ( UP ) THEN
  299:                DO J = 1, I
  300:                   T = CABS1( A( J, I ) )
  301:                   U = U + S( J )*T
  302:                   WORK( J ) = WORK( J ) + D*T
  303:                END DO
  304:                DO J = I+1,N
  305:                   T = CABS1( A( I, J ) )
  306:                   U = U + S( J )*T
  307:                   WORK( J ) = WORK( J ) + D*T
  308:                END DO
  309:             ELSE
  310:                DO J = 1, I
  311:                   T = CABS1( A( I, J ) )
  312:                   U = U + S( J )*T
  313:                   WORK( J ) = WORK( J ) + D*T
  314:                END DO
  315:                DO J = I+1,N
  316:                   T = CABS1( A( J, I ) )
  317:                   U = U + S( J )*T
  318:                   WORK( J ) = WORK( J ) + D*T
  319:                END DO
  320:             END IF
  321: 
  322:             AVG = AVG + ( U + WORK( I ) ) * D / N
  323:             S( I ) = SI
  324:          END DO
  325:       END DO
  326: 
  327:  999  CONTINUE
  328: 
  329:       SMLNUM = DLAMCH( 'SAFEMIN' )
  330:       BIGNUM = ONE / SMLNUM
  331:       SMIN = BIGNUM
  332:       SMAX = ZERO
  333:       T = ONE / SQRT( AVG )
  334:       BASE = DLAMCH( 'B' )
  335:       U = ONE / LOG( BASE )
  336:       DO I = 1, N
  337:          S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
  338:          SMIN = MIN( SMIN, S( I ) )
  339:          SMAX = MAX( SMAX, S( I ) )
  340:       END DO
  341:       SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  342: *
  343:       END

CVSweb interface <joel.bertrand@systella.fr>