--- rpl/lapack/lapack/zsyequb.f 2010/08/07 13:21:11 1.1
+++ rpl/lapack/lapack/zsyequb.f 2011/11/21 22:19:57 1.6
@@ -1,15 +1,146 @@
- SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
+*> \brief \b ZSYEQUB
*
-* -- LAPACK routine (version 3.2.2) --
-* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
-* -- Jason Riedy of Univ. of California Berkeley. --
-* -- June 2010 --
+* =========== DOCUMENTATION ===========
*
-* -- LAPACK is a software package provided by Univ. of Tennessee, --
-* -- Univ. of California Berkeley and NAG Ltd. --
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZSYEQUB + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, N
+* DOUBLE PRECISION AMAX, SCOND
+* CHARACTER UPLO
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), WORK( * )
+* DOUBLE PRECISION S( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZSYEQUB computes row and column scalings intended to equilibrate a
+*> symmetric matrix A and reduce its condition number
+*> (with respect to the two-norm). S contains the scale factors,
+*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
+*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
+*> choice of S puts the condition number of B within a factor N of the
+*> smallest possible condition number over all possible diagonal
+*> scalings.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the details of the factorization are stored
+*> as an upper or lower triangular matrix.
+*> = 'U': Upper triangular, form is A = U*D*U**T;
+*> = 'L': Lower triangular, form is A = L*D*L**T.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> The N-by-N symmetric matrix whose scaling
+*> factors are to be computed. Only the diagonal elements of A
+*> are referenced.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] S
+*> \verbatim
+*> S is DOUBLE PRECISION array, dimension (N)
+*> If INFO = 0, S contains the scale factors for A.
+*> \endverbatim
+*>
+*> \param[out] SCOND
+*> \verbatim
+*> SCOND is DOUBLE PRECISION
+*> If INFO = 0, S contains the ratio of the smallest S(i) to
+*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
+*> large nor too small, it is not worth scaling by S.
+*> \endverbatim
+*>
+*> \param[out] AMAX
+*> \verbatim
+*> AMAX is DOUBLE PRECISION
+*> Absolute value of largest matrix element. If AMAX is very
+*> close to overflow or very close to underflow, the matrix
+*> should be scaled.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (3*N)
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, the i-th diagonal element is nonpositive.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16SYcomputational
+*
+*> \par References:
+* ================
+*>
+*> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
+*> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
+*> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
+*> Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
+*>
+* =====================================================================
+ SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
+*
+* -- LAPACK computational routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
*
- IMPLICIT NONE
-* ..
* .. Scalar Arguments ..
INTEGER INFO, LDA, N
DOUBLE PRECISION AMAX, SCOND
@@ -20,66 +151,6 @@
DOUBLE PRECISION S( * )
* ..
*
-* Purpose
-* =======
-*
-* ZSYEQUB computes row and column scalings intended to equilibrate a
-* symmetric matrix A and reduce its condition number
-* (with respect to the two-norm). S contains the scale factors,
-* S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
-* elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
-* choice of S puts the condition number of B within a factor N of the
-* smallest possible condition number over all possible diagonal
-* scalings.
-*
-* Arguments
-* =========
-*
-* UPLO (input) CHARACTER*1
-* Specifies whether the details of the factorization are stored
-* as an upper or lower triangular matrix.
-* = 'U': Upper triangular, form is A = U*D*U**T;
-* = 'L': Lower triangular, form is A = L*D*L**T.
-*
-* N (input) INTEGER
-* The order of the matrix A. N >= 0.
-*
-* A (input) COMPLEX*16 array, dimension (LDA,N)
-* The N-by-N symmetric matrix whose scaling
-* factors are to be computed. Only the diagonal elements of A
-* are referenced.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* S (output) DOUBLE PRECISION array, dimension (N)
-* If INFO = 0, S contains the scale factors for A.
-*
-* SCOND (output) DOUBLE PRECISION
-* If INFO = 0, S contains the ratio of the smallest S(i) to
-* the largest S(i). If SCOND >= 0.1 and AMAX is neither too
-* large nor too small, it is not worth scaling by S.
-*
-* AMAX (output) DOUBLE PRECISION
-* Absolute value of largest matrix element. If AMAX is very
-* close to overflow or very close to underflow, the matrix
-* should be scaled.
-*
-* WORK (workspace) COMPLEX*16 array, dimension (3*N)
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-* > 0: if INFO = i, the i-th diagonal element is nonpositive.
-*
-* Further Details
-* ======= =======
-*
-* Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization",
-* Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
-* DOI 10.1023/B:NUMA.0000016606.32820.69
-* Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
-*
* =====================================================================
*
* .. Parameters ..