File:  [local] / rpl / lapack / lapack / zsteqr.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:40 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZSTEQR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZSTEQR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsteqr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsteqr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsteqr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          COMPZ
   25: *       INTEGER            INFO, LDZ, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   D( * ), E( * ), WORK( * )
   29: *       COMPLEX*16         Z( LDZ, * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSTEQR computes all eigenvalues and, optionally, eigenvectors of a
   39: *> symmetric tridiagonal matrix using the implicit QL or QR method.
   40: *> The eigenvectors of a full or band complex Hermitian matrix can also
   41: *> be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this
   42: *> matrix to tridiagonal form.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] COMPZ
   49: *> \verbatim
   50: *>          COMPZ is CHARACTER*1
   51: *>          = 'N':  Compute eigenvalues only.
   52: *>          = 'V':  Compute eigenvalues and eigenvectors of the original
   53: *>                  Hermitian matrix.  On entry, Z must contain the
   54: *>                  unitary matrix used to reduce the original matrix
   55: *>                  to tridiagonal form.
   56: *>          = 'I':  Compute eigenvalues and eigenvectors of the
   57: *>                  tridiagonal matrix.  Z is initialized to the identity
   58: *>                  matrix.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] N
   62: *> \verbatim
   63: *>          N is INTEGER
   64: *>          The order of the matrix.  N >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in,out] D
   68: *> \verbatim
   69: *>          D is DOUBLE PRECISION array, dimension (N)
   70: *>          On entry, the diagonal elements of the tridiagonal matrix.
   71: *>          On exit, if INFO = 0, the eigenvalues in ascending order.
   72: *> \endverbatim
   73: *>
   74: *> \param[in,out] E
   75: *> \verbatim
   76: *>          E is DOUBLE PRECISION array, dimension (N-1)
   77: *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
   78: *>          matrix.
   79: *>          On exit, E has been destroyed.
   80: *> \endverbatim
   81: *>
   82: *> \param[in,out] Z
   83: *> \verbatim
   84: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
   85: *>          On entry, if  COMPZ = 'V', then Z contains the unitary
   86: *>          matrix used in the reduction to tridiagonal form.
   87: *>          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
   88: *>          orthonormal eigenvectors of the original Hermitian matrix,
   89: *>          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
   90: *>          of the symmetric tridiagonal matrix.
   91: *>          If COMPZ = 'N', then Z is not referenced.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDZ
   95: *> \verbatim
   96: *>          LDZ is INTEGER
   97: *>          The leading dimension of the array Z.  LDZ >= 1, and if
   98: *>          eigenvectors are desired, then  LDZ >= max(1,N).
   99: *> \endverbatim
  100: *>
  101: *> \param[out] WORK
  102: *> \verbatim
  103: *>          WORK is DOUBLE PRECISION array, dimension (max(1,2*N-2))
  104: *>          If COMPZ = 'N', then WORK is not referenced.
  105: *> \endverbatim
  106: *>
  107: *> \param[out] INFO
  108: *> \verbatim
  109: *>          INFO is INTEGER
  110: *>          = 0:  successful exit
  111: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  112: *>          > 0:  the algorithm has failed to find all the eigenvalues in
  113: *>                a total of 30*N iterations; if INFO = i, then i
  114: *>                elements of E have not converged to zero; on exit, D
  115: *>                and E contain the elements of a symmetric tridiagonal
  116: *>                matrix which is unitarily similar to the original
  117: *>                matrix.
  118: *> \endverbatim
  119: *
  120: *  Authors:
  121: *  ========
  122: *
  123: *> \author Univ. of Tennessee 
  124: *> \author Univ. of California Berkeley 
  125: *> \author Univ. of Colorado Denver 
  126: *> \author NAG Ltd. 
  127: *
  128: *> \date November 2011
  129: *
  130: *> \ingroup complex16OTHERcomputational
  131: *
  132: *  =====================================================================
  133:       SUBROUTINE ZSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
  134: *
  135: *  -- LAPACK computational routine (version 3.4.0) --
  136: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  137: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138: *     November 2011
  139: *
  140: *     .. Scalar Arguments ..
  141:       CHARACTER          COMPZ
  142:       INTEGER            INFO, LDZ, N
  143: *     ..
  144: *     .. Array Arguments ..
  145:       DOUBLE PRECISION   D( * ), E( * ), WORK( * )
  146:       COMPLEX*16         Z( LDZ, * )
  147: *     ..
  148: *
  149: *  =====================================================================
  150: *
  151: *     .. Parameters ..
  152:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE
  153:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  154:      $                   THREE = 3.0D0 )
  155:       COMPLEX*16         CZERO, CONE
  156:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  157:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  158:       INTEGER            MAXIT
  159:       PARAMETER          ( MAXIT = 30 )
  160: *     ..
  161: *     .. Local Scalars ..
  162:       INTEGER            I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
  163:      $                   LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
  164:      $                   NM1, NMAXIT
  165:       DOUBLE PRECISION   ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
  166:      $                   S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
  167: *     ..
  168: *     .. External Functions ..
  169:       LOGICAL            LSAME
  170:       DOUBLE PRECISION   DLAMCH, DLANST, DLAPY2
  171:       EXTERNAL           LSAME, DLAMCH, DLANST, DLAPY2
  172: *     ..
  173: *     .. External Subroutines ..
  174:       EXTERNAL           DLAE2, DLAEV2, DLARTG, DLASCL, DLASRT, XERBLA,
  175:      $                   ZLASET, ZLASR, ZSWAP
  176: *     ..
  177: *     .. Intrinsic Functions ..
  178:       INTRINSIC          ABS, MAX, SIGN, SQRT
  179: *     ..
  180: *     .. Executable Statements ..
  181: *
  182: *     Test the input parameters.
  183: *
  184:       INFO = 0
  185: *
  186:       IF( LSAME( COMPZ, 'N' ) ) THEN
  187:          ICOMPZ = 0
  188:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
  189:          ICOMPZ = 1
  190:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
  191:          ICOMPZ = 2
  192:       ELSE
  193:          ICOMPZ = -1
  194:       END IF
  195:       IF( ICOMPZ.LT.0 ) THEN
  196:          INFO = -1
  197:       ELSE IF( N.LT.0 ) THEN
  198:          INFO = -2
  199:       ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
  200:      $         N ) ) ) THEN
  201:          INFO = -6
  202:       END IF
  203:       IF( INFO.NE.0 ) THEN
  204:          CALL XERBLA( 'ZSTEQR', -INFO )
  205:          RETURN
  206:       END IF
  207: *
  208: *     Quick return if possible
  209: *
  210:       IF( N.EQ.0 )
  211:      $   RETURN
  212: *
  213:       IF( N.EQ.1 ) THEN
  214:          IF( ICOMPZ.EQ.2 )
  215:      $      Z( 1, 1 ) = CONE
  216:          RETURN
  217:       END IF
  218: *
  219: *     Determine the unit roundoff and over/underflow thresholds.
  220: *
  221:       EPS = DLAMCH( 'E' )
  222:       EPS2 = EPS**2
  223:       SAFMIN = DLAMCH( 'S' )
  224:       SAFMAX = ONE / SAFMIN
  225:       SSFMAX = SQRT( SAFMAX ) / THREE
  226:       SSFMIN = SQRT( SAFMIN ) / EPS2
  227: *
  228: *     Compute the eigenvalues and eigenvectors of the tridiagonal
  229: *     matrix.
  230: *
  231:       IF( ICOMPZ.EQ.2 )
  232:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
  233: *
  234:       NMAXIT = N*MAXIT
  235:       JTOT = 0
  236: *
  237: *     Determine where the matrix splits and choose QL or QR iteration
  238: *     for each block, according to whether top or bottom diagonal
  239: *     element is smaller.
  240: *
  241:       L1 = 1
  242:       NM1 = N - 1
  243: *
  244:    10 CONTINUE
  245:       IF( L1.GT.N )
  246:      $   GO TO 160
  247:       IF( L1.GT.1 )
  248:      $   E( L1-1 ) = ZERO
  249:       IF( L1.LE.NM1 ) THEN
  250:          DO 20 M = L1, NM1
  251:             TST = ABS( E( M ) )
  252:             IF( TST.EQ.ZERO )
  253:      $         GO TO 30
  254:             IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
  255:      $          1 ) ) ) )*EPS ) THEN
  256:                E( M ) = ZERO
  257:                GO TO 30
  258:             END IF
  259:    20    CONTINUE
  260:       END IF
  261:       M = N
  262: *
  263:    30 CONTINUE
  264:       L = L1
  265:       LSV = L
  266:       LEND = M
  267:       LENDSV = LEND
  268:       L1 = M + 1
  269:       IF( LEND.EQ.L )
  270:      $   GO TO 10
  271: *
  272: *     Scale submatrix in rows and columns L to LEND
  273: *
  274:       ANORM = DLANST( 'I', LEND-L+1, D( L ), E( L ) )
  275:       ISCALE = 0
  276:       IF( ANORM.EQ.ZERO )
  277:      $   GO TO 10
  278:       IF( ANORM.GT.SSFMAX ) THEN
  279:          ISCALE = 1
  280:          CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
  281:      $                INFO )
  282:          CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
  283:      $                INFO )
  284:       ELSE IF( ANORM.LT.SSFMIN ) THEN
  285:          ISCALE = 2
  286:          CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
  287:      $                INFO )
  288:          CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
  289:      $                INFO )
  290:       END IF
  291: *
  292: *     Choose between QL and QR iteration
  293: *
  294:       IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
  295:          LEND = LSV
  296:          L = LENDSV
  297:       END IF
  298: *
  299:       IF( LEND.GT.L ) THEN
  300: *
  301: *        QL Iteration
  302: *
  303: *        Look for small subdiagonal element.
  304: *
  305:    40    CONTINUE
  306:          IF( L.NE.LEND ) THEN
  307:             LENDM1 = LEND - 1
  308:             DO 50 M = L, LENDM1
  309:                TST = ABS( E( M ) )**2
  310:                IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
  311:      $             SAFMIN )GO TO 60
  312:    50       CONTINUE
  313:          END IF
  314: *
  315:          M = LEND
  316: *
  317:    60    CONTINUE
  318:          IF( M.LT.LEND )
  319:      $      E( M ) = ZERO
  320:          P = D( L )
  321:          IF( M.EQ.L )
  322:      $      GO TO 80
  323: *
  324: *        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
  325: *        to compute its eigensystem.
  326: *
  327:          IF( M.EQ.L+1 ) THEN
  328:             IF( ICOMPZ.GT.0 ) THEN
  329:                CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
  330:                WORK( L ) = C
  331:                WORK( N-1+L ) = S
  332:                CALL ZLASR( 'R', 'V', 'B', N, 2, WORK( L ),
  333:      $                     WORK( N-1+L ), Z( 1, L ), LDZ )
  334:             ELSE
  335:                CALL DLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
  336:             END IF
  337:             D( L ) = RT1
  338:             D( L+1 ) = RT2
  339:             E( L ) = ZERO
  340:             L = L + 2
  341:             IF( L.LE.LEND )
  342:      $         GO TO 40
  343:             GO TO 140
  344:          END IF
  345: *
  346:          IF( JTOT.EQ.NMAXIT )
  347:      $      GO TO 140
  348:          JTOT = JTOT + 1
  349: *
  350: *        Form shift.
  351: *
  352:          G = ( D( L+1 )-P ) / ( TWO*E( L ) )
  353:          R = DLAPY2( G, ONE )
  354:          G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
  355: *
  356:          S = ONE
  357:          C = ONE
  358:          P = ZERO
  359: *
  360: *        Inner loop
  361: *
  362:          MM1 = M - 1
  363:          DO 70 I = MM1, L, -1
  364:             F = S*E( I )
  365:             B = C*E( I )
  366:             CALL DLARTG( G, F, C, S, R )
  367:             IF( I.NE.M-1 )
  368:      $         E( I+1 ) = R
  369:             G = D( I+1 ) - P
  370:             R = ( D( I )-G )*S + TWO*C*B
  371:             P = S*R
  372:             D( I+1 ) = G + P
  373:             G = C*R - B
  374: *
  375: *           If eigenvectors are desired, then save rotations.
  376: *
  377:             IF( ICOMPZ.GT.0 ) THEN
  378:                WORK( I ) = C
  379:                WORK( N-1+I ) = -S
  380:             END IF
  381: *
  382:    70    CONTINUE
  383: *
  384: *        If eigenvectors are desired, then apply saved rotations.
  385: *
  386:          IF( ICOMPZ.GT.0 ) THEN
  387:             MM = M - L + 1
  388:             CALL ZLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ),
  389:      $                  Z( 1, L ), LDZ )
  390:          END IF
  391: *
  392:          D( L ) = D( L ) - P
  393:          E( L ) = G
  394:          GO TO 40
  395: *
  396: *        Eigenvalue found.
  397: *
  398:    80    CONTINUE
  399:          D( L ) = P
  400: *
  401:          L = L + 1
  402:          IF( L.LE.LEND )
  403:      $      GO TO 40
  404:          GO TO 140
  405: *
  406:       ELSE
  407: *
  408: *        QR Iteration
  409: *
  410: *        Look for small superdiagonal element.
  411: *
  412:    90    CONTINUE
  413:          IF( L.NE.LEND ) THEN
  414:             LENDP1 = LEND + 1
  415:             DO 100 M = L, LENDP1, -1
  416:                TST = ABS( E( M-1 ) )**2
  417:                IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
  418:      $             SAFMIN )GO TO 110
  419:   100       CONTINUE
  420:          END IF
  421: *
  422:          M = LEND
  423: *
  424:   110    CONTINUE
  425:          IF( M.GT.LEND )
  426:      $      E( M-1 ) = ZERO
  427:          P = D( L )
  428:          IF( M.EQ.L )
  429:      $      GO TO 130
  430: *
  431: *        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
  432: *        to compute its eigensystem.
  433: *
  434:          IF( M.EQ.L-1 ) THEN
  435:             IF( ICOMPZ.GT.0 ) THEN
  436:                CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
  437:                WORK( M ) = C
  438:                WORK( N-1+M ) = S
  439:                CALL ZLASR( 'R', 'V', 'F', N, 2, WORK( M ),
  440:      $                     WORK( N-1+M ), Z( 1, L-1 ), LDZ )
  441:             ELSE
  442:                CALL DLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
  443:             END IF
  444:             D( L-1 ) = RT1
  445:             D( L ) = RT2
  446:             E( L-1 ) = ZERO
  447:             L = L - 2
  448:             IF( L.GE.LEND )
  449:      $         GO TO 90
  450:             GO TO 140
  451:          END IF
  452: *
  453:          IF( JTOT.EQ.NMAXIT )
  454:      $      GO TO 140
  455:          JTOT = JTOT + 1
  456: *
  457: *        Form shift.
  458: *
  459:          G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
  460:          R = DLAPY2( G, ONE )
  461:          G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
  462: *
  463:          S = ONE
  464:          C = ONE
  465:          P = ZERO
  466: *
  467: *        Inner loop
  468: *
  469:          LM1 = L - 1
  470:          DO 120 I = M, LM1
  471:             F = S*E( I )
  472:             B = C*E( I )
  473:             CALL DLARTG( G, F, C, S, R )
  474:             IF( I.NE.M )
  475:      $         E( I-1 ) = R
  476:             G = D( I ) - P
  477:             R = ( D( I+1 )-G )*S + TWO*C*B
  478:             P = S*R
  479:             D( I ) = G + P
  480:             G = C*R - B
  481: *
  482: *           If eigenvectors are desired, then save rotations.
  483: *
  484:             IF( ICOMPZ.GT.0 ) THEN
  485:                WORK( I ) = C
  486:                WORK( N-1+I ) = S
  487:             END IF
  488: *
  489:   120    CONTINUE
  490: *
  491: *        If eigenvectors are desired, then apply saved rotations.
  492: *
  493:          IF( ICOMPZ.GT.0 ) THEN
  494:             MM = L - M + 1
  495:             CALL ZLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ),
  496:      $                  Z( 1, M ), LDZ )
  497:          END IF
  498: *
  499:          D( L ) = D( L ) - P
  500:          E( LM1 ) = G
  501:          GO TO 90
  502: *
  503: *        Eigenvalue found.
  504: *
  505:   130    CONTINUE
  506:          D( L ) = P
  507: *
  508:          L = L - 1
  509:          IF( L.GE.LEND )
  510:      $      GO TO 90
  511:          GO TO 140
  512: *
  513:       END IF
  514: *
  515: *     Undo scaling if necessary
  516: *
  517:   140 CONTINUE
  518:       IF( ISCALE.EQ.1 ) THEN
  519:          CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
  520:      $                D( LSV ), N, INFO )
  521:          CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
  522:      $                N, INFO )
  523:       ELSE IF( ISCALE.EQ.2 ) THEN
  524:          CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
  525:      $                D( LSV ), N, INFO )
  526:          CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
  527:      $                N, INFO )
  528:       END IF
  529: *
  530: *     Check for no convergence to an eigenvalue after a total
  531: *     of N*MAXIT iterations.
  532: *
  533:       IF( JTOT.EQ.NMAXIT ) THEN
  534:          DO 150 I = 1, N - 1
  535:             IF( E( I ).NE.ZERO )
  536:      $         INFO = INFO + 1
  537:   150    CONTINUE
  538:          RETURN
  539:       END IF
  540:       GO TO 10
  541: *
  542: *     Order eigenvalues and eigenvectors.
  543: *
  544:   160 CONTINUE
  545:       IF( ICOMPZ.EQ.0 ) THEN
  546: *
  547: *        Use Quick Sort
  548: *
  549:          CALL DLASRT( 'I', N, D, INFO )
  550: *
  551:       ELSE
  552: *
  553: *        Use Selection Sort to minimize swaps of eigenvectors
  554: *
  555:          DO 180 II = 2, N
  556:             I = II - 1
  557:             K = I
  558:             P = D( I )
  559:             DO 170 J = II, N
  560:                IF( D( J ).LT.P ) THEN
  561:                   K = J
  562:                   P = D( J )
  563:                END IF
  564:   170       CONTINUE
  565:             IF( K.NE.I ) THEN
  566:                D( K ) = D( I )
  567:                D( I ) = P
  568:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
  569:             END IF
  570:   180    CONTINUE
  571:       END IF
  572:       RETURN
  573: *
  574: *     End of ZSTEQR
  575: *
  576:       END

CVSweb interface <joel.bertrand@systella.fr>