File:  [local] / rpl / lapack / lapack / zstemr.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:29:01 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
    2:      $                   M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
    3:      $                   IWORK, LIWORK, INFO )
    4:       IMPLICIT NONE
    5: *
    6: *  -- LAPACK computational routine (version 3.2.1)                    --
    7: *
    8: *  -- April 2009                                                      --
    9: *
   10: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
   11: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   12: *
   13: *     .. Scalar Arguments ..
   14:       CHARACTER          JOBZ, RANGE
   15:       LOGICAL            TRYRAC
   16:       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
   17:       DOUBLE PRECISION VL, VU
   18: *     ..
   19: *     .. Array Arguments ..
   20:       INTEGER            ISUPPZ( * ), IWORK( * )
   21:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
   22:       COMPLEX*16         Z( LDZ, * )
   23: *     ..
   24: *
   25: *  Purpose
   26: *  =======
   27: *
   28: *  ZSTEMR computes selected eigenvalues and, optionally, eigenvectors
   29: *  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
   30: *  a well defined set of pairwise different real eigenvalues, the corresponding
   31: *  real eigenvectors are pairwise orthogonal.
   32: *
   33: *  The spectrum may be computed either completely or partially by specifying
   34: *  either an interval (VL,VU] or a range of indices IL:IU for the desired
   35: *  eigenvalues.
   36: *
   37: *  Depending on the number of desired eigenvalues, these are computed either
   38: *  by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
   39: *  computed by the use of various suitable L D L^T factorizations near clusters
   40: *  of close eigenvalues (referred to as RRRs, Relatively Robust
   41: *  Representations). An informal sketch of the algorithm follows.
   42: *
   43: *  For each unreduced block (submatrix) of T,
   44: *     (a) Compute T - sigma I  = L D L^T, so that L and D
   45: *         define all the wanted eigenvalues to high relative accuracy.
   46: *         This means that small relative changes in the entries of D and L
   47: *         cause only small relative changes in the eigenvalues and
   48: *         eigenvectors. The standard (unfactored) representation of the
   49: *         tridiagonal matrix T does not have this property in general.
   50: *     (b) Compute the eigenvalues to suitable accuracy.
   51: *         If the eigenvectors are desired, the algorithm attains full
   52: *         accuracy of the computed eigenvalues only right before
   53: *         the corresponding vectors have to be computed, see steps c) and d).
   54: *     (c) For each cluster of close eigenvalues, select a new
   55: *         shift close to the cluster, find a new factorization, and refine
   56: *         the shifted eigenvalues to suitable accuracy.
   57: *     (d) For each eigenvalue with a large enough relative separation compute
   58: *         the corresponding eigenvector by forming a rank revealing twisted
   59: *         factorization. Go back to (c) for any clusters that remain.
   60: *
   61: *  For more details, see:
   62: *  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   63: *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   64: *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   65: *  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   66: *    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   67: *    2004.  Also LAPACK Working Note 154.
   68: *  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   69: *    tridiagonal eigenvalue/eigenvector problem",
   70: *    Computer Science Division Technical Report No. UCB/CSD-97-971,
   71: *    UC Berkeley, May 1997.
   72: *
   73: *  Further Details
   74: *  1.ZSTEMR works only on machines which follow IEEE-754
   75: *  floating-point standard in their handling of infinities and NaNs.
   76: *  This permits the use of efficient inner loops avoiding a check for
   77: *  zero divisors.
   78: *
   79: *  2. LAPACK routines can be used to reduce a complex Hermitean matrix to
   80: *  real symmetric tridiagonal form.
   81: *
   82: *  (Any complex Hermitean tridiagonal matrix has real values on its diagonal
   83: *  and potentially complex numbers on its off-diagonals. By applying a
   84: *  similarity transform with an appropriate diagonal matrix
   85: *  diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean
   86: *  matrix can be transformed into a real symmetric matrix and complex
   87: *  arithmetic can be entirely avoided.)
   88: *
   89: *  While the eigenvectors of the real symmetric tridiagonal matrix are real,
   90: *  the eigenvectors of original complex Hermitean matrix have complex entries
   91: *  in general.
   92: *  Since LAPACK drivers overwrite the matrix data with the eigenvectors,
   93: *  ZSTEMR accepts complex workspace to facilitate interoperability
   94: *  with ZUNMTR or ZUPMTR.
   95: *
   96: *  Arguments
   97: *  =========
   98: *
   99: *  JOBZ    (input) CHARACTER*1
  100: *          = 'N':  Compute eigenvalues only;
  101: *          = 'V':  Compute eigenvalues and eigenvectors.
  102: *
  103: *  RANGE   (input) CHARACTER*1
  104: *          = 'A': all eigenvalues will be found.
  105: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
  106: *                 will be found.
  107: *          = 'I': the IL-th through IU-th eigenvalues will be found.
  108: *
  109: *  N       (input) INTEGER
  110: *          The order of the matrix.  N >= 0.
  111: *
  112: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
  113: *          On entry, the N diagonal elements of the tridiagonal matrix
  114: *          T. On exit, D is overwritten.
  115: *
  116: *  E       (input/output) DOUBLE PRECISION array, dimension (N)
  117: *          On entry, the (N-1) subdiagonal elements of the tridiagonal
  118: *          matrix T in elements 1 to N-1 of E. E(N) need not be set on
  119: *          input, but is used internally as workspace.
  120: *          On exit, E is overwritten.
  121: *
  122: *  VL      (input) DOUBLE PRECISION
  123: *  VU      (input) DOUBLE PRECISION
  124: *          If RANGE='V', the lower and upper bounds of the interval to
  125: *          be searched for eigenvalues. VL < VU.
  126: *          Not referenced if RANGE = 'A' or 'I'.
  127: *
  128: *  IL      (input) INTEGER
  129: *  IU      (input) INTEGER
  130: *          If RANGE='I', the indices (in ascending order) of the
  131: *          smallest and largest eigenvalues to be returned.
  132: *          1 <= IL <= IU <= N, if N > 0.
  133: *          Not referenced if RANGE = 'A' or 'V'.
  134: *
  135: *  M       (output) INTEGER
  136: *          The total number of eigenvalues found.  0 <= M <= N.
  137: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  138: *
  139: *  W       (output) DOUBLE PRECISION array, dimension (N)
  140: *          The first M elements contain the selected eigenvalues in
  141: *          ascending order.
  142: *
  143: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M) )
  144: *          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
  145: *          contain the orthonormal eigenvectors of the matrix T
  146: *          corresponding to the selected eigenvalues, with the i-th
  147: *          column of Z holding the eigenvector associated with W(i).
  148: *          If JOBZ = 'N', then Z is not referenced.
  149: *          Note: the user must ensure that at least max(1,M) columns are
  150: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  151: *          is not known in advance and can be computed with a workspace
  152: *          query by setting NZC = -1, see below.
  153: *
  154: *  LDZ     (input) INTEGER
  155: *          The leading dimension of the array Z.  LDZ >= 1, and if
  156: *          JOBZ = 'V', then LDZ >= max(1,N).
  157: *
  158: *  NZC     (input) INTEGER
  159: *          The number of eigenvectors to be held in the array Z.
  160: *          If RANGE = 'A', then NZC >= max(1,N).
  161: *          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
  162: *          If RANGE = 'I', then NZC >= IU-IL+1.
  163: *          If NZC = -1, then a workspace query is assumed; the
  164: *          routine calculates the number of columns of the array Z that
  165: *          are needed to hold the eigenvectors.
  166: *          This value is returned as the first entry of the Z array, and
  167: *          no error message related to NZC is issued by XERBLA.
  168: *
  169: *  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
  170: *          The support of the eigenvectors in Z, i.e., the indices
  171: *          indicating the nonzero elements in Z. The i-th computed eigenvector
  172: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  173: *          ISUPPZ( 2*i ). This is relevant in the case when the matrix
  174: *          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
  175: *
  176: *  TRYRAC  (input/output) LOGICAL
  177: *          If TRYRAC.EQ..TRUE., indicates that the code should check whether
  178: *          the tridiagonal matrix defines its eigenvalues to high relative
  179: *          accuracy.  If so, the code uses relative-accuracy preserving
  180: *          algorithms that might be (a bit) slower depending on the matrix.
  181: *          If the matrix does not define its eigenvalues to high relative
  182: *          accuracy, the code can uses possibly faster algorithms.
  183: *          If TRYRAC.EQ..FALSE., the code is not required to guarantee
  184: *          relatively accurate eigenvalues and can use the fastest possible
  185: *          techniques.
  186: *          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
  187: *          does not define its eigenvalues to high relative accuracy.
  188: *
  189: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
  190: *          On exit, if INFO = 0, WORK(1) returns the optimal
  191: *          (and minimal) LWORK.
  192: *
  193: *  LWORK   (input) INTEGER
  194: *          The dimension of the array WORK. LWORK >= max(1,18*N)
  195: *          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
  196: *          If LWORK = -1, then a workspace query is assumed; the routine
  197: *          only calculates the optimal size of the WORK array, returns
  198: *          this value as the first entry of the WORK array, and no error
  199: *          message related to LWORK is issued by XERBLA.
  200: *
  201: *  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
  202: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  203: *
  204: *  LIWORK  (input) INTEGER
  205: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
  206: *          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
  207: *          if only the eigenvalues are to be computed.
  208: *          If LIWORK = -1, then a workspace query is assumed; the
  209: *          routine only calculates the optimal size of the IWORK array,
  210: *          returns this value as the first entry of the IWORK array, and
  211: *          no error message related to LIWORK is issued by XERBLA.
  212: *
  213: *  INFO    (output) INTEGER
  214: *          On exit, INFO
  215: *          = 0:  successful exit
  216: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  217: *          > 0:  if INFO = 1X, internal error in DLARRE,
  218: *                if INFO = 2X, internal error in ZLARRV.
  219: *                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
  220: *                the nonzero error code returned by DLARRE or
  221: *                ZLARRV, respectively.
  222: *
  223: *
  224: *  Further Details
  225: *  ===============
  226: *
  227: *  Based on contributions by
  228: *     Beresford Parlett, University of California, Berkeley, USA
  229: *     Jim Demmel, University of California, Berkeley, USA
  230: *     Inderjit Dhillon, University of Texas, Austin, USA
  231: *     Osni Marques, LBNL/NERSC, USA
  232: *     Christof Voemel, University of California, Berkeley, USA
  233: *
  234: *  =====================================================================
  235: *
  236: *     .. Parameters ..
  237:       DOUBLE PRECISION   ZERO, ONE, FOUR, MINRGP
  238:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  239:      $                     FOUR = 4.0D0,
  240:      $                     MINRGP = 1.0D-3 )
  241: *     ..
  242: *     .. Local Scalars ..
  243:       LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
  244:       INTEGER            I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
  245:      $                   IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
  246:      $                   INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
  247:      $                   ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
  248:      $                   NZCMIN, OFFSET, WBEGIN, WEND
  249:       DOUBLE PRECISION   BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
  250:      $                   RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
  251:      $                   THRESH, TMP, TNRM, WL, WU
  252: *     ..
  253: *     ..
  254: *     .. External Functions ..
  255:       LOGICAL            LSAME
  256:       DOUBLE PRECISION   DLAMCH, DLANST
  257:       EXTERNAL           LSAME, DLAMCH, DLANST
  258: *     ..
  259: *     .. External Subroutines ..
  260:       EXTERNAL           DCOPY, DLAE2, DLAEV2, DLARRC, DLARRE, DLARRJ,
  261:      $                   DLARRR, DLASRT, DSCAL, XERBLA, ZLARRV, ZSWAP
  262: *     ..
  263: *     .. Intrinsic Functions ..
  264:       INTRINSIC          MAX, MIN, SQRT
  265: 
  266: 
  267: *     ..
  268: *     .. Executable Statements ..
  269: *
  270: *     Test the input parameters.
  271: *
  272:       WANTZ = LSAME( JOBZ, 'V' )
  273:       ALLEIG = LSAME( RANGE, 'A' )
  274:       VALEIG = LSAME( RANGE, 'V' )
  275:       INDEIG = LSAME( RANGE, 'I' )
  276: *
  277:       LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
  278:       ZQUERY = ( NZC.EQ.-1 )
  279: 
  280: *     DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
  281: *     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
  282: *     Furthermore, ZLARRV needs WORK of size 12*N, IWORK of size 7*N.
  283:       IF( WANTZ ) THEN
  284:          LWMIN = 18*N
  285:          LIWMIN = 10*N
  286:       ELSE
  287: *        need less workspace if only the eigenvalues are wanted
  288:          LWMIN = 12*N
  289:          LIWMIN = 8*N
  290:       ENDIF
  291: 
  292:       WL = ZERO
  293:       WU = ZERO
  294:       IIL = 0
  295:       IIU = 0
  296: 
  297:       IF( VALEIG ) THEN
  298: *        We do not reference VL, VU in the cases RANGE = 'I','A'
  299: *        The interval (WL, WU] contains all the wanted eigenvalues.
  300: *        It is either given by the user or computed in DLARRE.
  301:          WL = VL
  302:          WU = VU
  303:       ELSEIF( INDEIG ) THEN
  304: *        We do not reference IL, IU in the cases RANGE = 'V','A'
  305:          IIL = IL
  306:          IIU = IU
  307:       ENDIF
  308: *
  309:       INFO = 0
  310:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  311:          INFO = -1
  312:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  313:          INFO = -2
  314:       ELSE IF( N.LT.0 ) THEN
  315:          INFO = -3
  316:       ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
  317:          INFO = -7
  318:       ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
  319:          INFO = -8
  320:       ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
  321:          INFO = -9
  322:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  323:          INFO = -13
  324:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  325:          INFO = -17
  326:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  327:          INFO = -19
  328:       END IF
  329: *
  330: *     Get machine constants.
  331: *
  332:       SAFMIN = DLAMCH( 'Safe minimum' )
  333:       EPS = DLAMCH( 'Precision' )
  334:       SMLNUM = SAFMIN / EPS
  335:       BIGNUM = ONE / SMLNUM
  336:       RMIN = SQRT( SMLNUM )
  337:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  338: *
  339:       IF( INFO.EQ.0 ) THEN
  340:          WORK( 1 ) = LWMIN
  341:          IWORK( 1 ) = LIWMIN
  342: *
  343:          IF( WANTZ .AND. ALLEIG ) THEN
  344:             NZCMIN = N
  345:          ELSE IF( WANTZ .AND. VALEIG ) THEN
  346:             CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN,
  347:      $                            NZCMIN, ITMP, ITMP2, INFO )
  348:          ELSE IF( WANTZ .AND. INDEIG ) THEN
  349:             NZCMIN = IIU-IIL+1
  350:          ELSE
  351: *           WANTZ .EQ. FALSE.
  352:             NZCMIN = 0
  353:          ENDIF
  354:          IF( ZQUERY .AND. INFO.EQ.0 ) THEN
  355:             Z( 1,1 ) = NZCMIN
  356:          ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
  357:             INFO = -14
  358:          END IF
  359:       END IF
  360: 
  361:       IF( INFO.NE.0 ) THEN
  362: *
  363:          CALL XERBLA( 'ZSTEMR', -INFO )
  364: *
  365:          RETURN
  366:       ELSE IF( LQUERY .OR. ZQUERY ) THEN
  367:          RETURN
  368:       END IF
  369: *
  370: *     Handle N = 0, 1, and 2 cases immediately
  371: *
  372:       M = 0
  373:       IF( N.EQ.0 )
  374:      $   RETURN
  375: *
  376:       IF( N.EQ.1 ) THEN
  377:          IF( ALLEIG .OR. INDEIG ) THEN
  378:             M = 1
  379:             W( 1 ) = D( 1 )
  380:          ELSE
  381:             IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
  382:                M = 1
  383:                W( 1 ) = D( 1 )
  384:             END IF
  385:          END IF
  386:          IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  387:             Z( 1, 1 ) = ONE
  388:             ISUPPZ(1) = 1
  389:             ISUPPZ(2) = 1
  390:          END IF
  391:          RETURN
  392:       END IF
  393: *
  394:       IF( N.EQ.2 ) THEN
  395:          IF( .NOT.WANTZ ) THEN
  396:             CALL DLAE2( D(1), E(1), D(2), R1, R2 )
  397:          ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  398:             CALL DLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
  399:          END IF
  400:          IF( ALLEIG.OR.
  401:      $      (VALEIG.AND.(R2.GT.WL).AND.
  402:      $                  (R2.LE.WU)).OR.
  403:      $      (INDEIG.AND.(IIL.EQ.1)) ) THEN
  404:             M = M+1
  405:             W( M ) = R2
  406:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  407:                Z( 1, M ) = -SN
  408:                Z( 2, M ) = CS
  409: *              Note: At most one of SN and CS can be zero.
  410:                IF (SN.NE.ZERO) THEN
  411:                   IF (CS.NE.ZERO) THEN
  412:                      ISUPPZ(2*M-1) = 1
  413:                      ISUPPZ(2*M-1) = 2
  414:                   ELSE
  415:                      ISUPPZ(2*M-1) = 1
  416:                      ISUPPZ(2*M-1) = 1
  417:                   END IF
  418:                ELSE
  419:                   ISUPPZ(2*M-1) = 2
  420:                   ISUPPZ(2*M) = 2
  421:                END IF
  422:             ENDIF
  423:          ENDIF
  424:          IF( ALLEIG.OR.
  425:      $      (VALEIG.AND.(R1.GT.WL).AND.
  426:      $                  (R1.LE.WU)).OR.
  427:      $      (INDEIG.AND.(IIU.EQ.2)) ) THEN
  428:             M = M+1
  429:             W( M ) = R1
  430:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  431:                Z( 1, M ) = CS
  432:                Z( 2, M ) = SN
  433: *              Note: At most one of SN and CS can be zero.
  434:                IF (SN.NE.ZERO) THEN
  435:                   IF (CS.NE.ZERO) THEN
  436:                      ISUPPZ(2*M-1) = 1
  437:                      ISUPPZ(2*M-1) = 2
  438:                   ELSE
  439:                      ISUPPZ(2*M-1) = 1
  440:                      ISUPPZ(2*M-1) = 1
  441:                   END IF
  442:                ELSE
  443:                   ISUPPZ(2*M-1) = 2
  444:                   ISUPPZ(2*M) = 2
  445:                END IF
  446:             ENDIF
  447:          ENDIF
  448:          RETURN
  449:       END IF
  450: 
  451: *     Continue with general N
  452: 
  453:       INDGRS = 1
  454:       INDERR = 2*N + 1
  455:       INDGP = 3*N + 1
  456:       INDD = 4*N + 1
  457:       INDE2 = 5*N + 1
  458:       INDWRK = 6*N + 1
  459: *
  460:       IINSPL = 1
  461:       IINDBL = N + 1
  462:       IINDW = 2*N + 1
  463:       IINDWK = 3*N + 1
  464: *
  465: *     Scale matrix to allowable range, if necessary.
  466: *     The allowable range is related to the PIVMIN parameter; see the
  467: *     comments in DLARRD.  The preference for scaling small values
  468: *     up is heuristic; we expect users' matrices not to be close to the
  469: *     RMAX threshold.
  470: *
  471:       SCALE = ONE
  472:       TNRM = DLANST( 'M', N, D, E )
  473:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
  474:          SCALE = RMIN / TNRM
  475:       ELSE IF( TNRM.GT.RMAX ) THEN
  476:          SCALE = RMAX / TNRM
  477:       END IF
  478:       IF( SCALE.NE.ONE ) THEN
  479:          CALL DSCAL( N, SCALE, D, 1 )
  480:          CALL DSCAL( N-1, SCALE, E, 1 )
  481:          TNRM = TNRM*SCALE
  482:          IF( VALEIG ) THEN
  483: *           If eigenvalues in interval have to be found,
  484: *           scale (WL, WU] accordingly
  485:             WL = WL*SCALE
  486:             WU = WU*SCALE
  487:          ENDIF
  488:       END IF
  489: *
  490: *     Compute the desired eigenvalues of the tridiagonal after splitting
  491: *     into smaller subblocks if the corresponding off-diagonal elements
  492: *     are small
  493: *     THRESH is the splitting parameter for DLARRE
  494: *     A negative THRESH forces the old splitting criterion based on the
  495: *     size of the off-diagonal. A positive THRESH switches to splitting
  496: *     which preserves relative accuracy.
  497: *
  498:       IF( TRYRAC ) THEN
  499: *        Test whether the matrix warrants the more expensive relative approach.
  500:          CALL DLARRR( N, D, E, IINFO )
  501:       ELSE
  502: *        The user does not care about relative accurately eigenvalues
  503:          IINFO = -1
  504:       ENDIF
  505: *     Set the splitting criterion
  506:       IF (IINFO.EQ.0) THEN
  507:          THRESH = EPS
  508:       ELSE
  509:          THRESH = -EPS
  510: *        relative accuracy is desired but T does not guarantee it
  511:          TRYRAC = .FALSE.
  512:       ENDIF
  513: *
  514:       IF( TRYRAC ) THEN
  515: *        Copy original diagonal, needed to guarantee relative accuracy
  516:          CALL DCOPY(N,D,1,WORK(INDD),1)
  517:       ENDIF
  518: *     Store the squares of the offdiagonal values of T
  519:       DO 5 J = 1, N-1
  520:          WORK( INDE2+J-1 ) = E(J)**2
  521:  5    CONTINUE
  522: 
  523: *     Set the tolerance parameters for bisection
  524:       IF( .NOT.WANTZ ) THEN
  525: *        DLARRE computes the eigenvalues to full precision.
  526:          RTOL1 = FOUR * EPS
  527:          RTOL2 = FOUR * EPS
  528:       ELSE
  529: *        DLARRE computes the eigenvalues to less than full precision.
  530: *        ZLARRV will refine the eigenvalue approximations, and we only
  531: *        need less accurate initial bisection in DLARRE.
  532: *        Note: these settings do only affect the subset case and DLARRE
  533:          RTOL1 = SQRT(EPS)
  534:          RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )
  535:       ENDIF
  536:       CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
  537:      $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
  538:      $             IWORK( IINSPL ), M, W, WORK( INDERR ),
  539:      $             WORK( INDGP ), IWORK( IINDBL ),
  540:      $             IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
  541:      $             WORK( INDWRK ), IWORK( IINDWK ), IINFO )
  542:       IF( IINFO.NE.0 ) THEN
  543:          INFO = 10 + ABS( IINFO )
  544:          RETURN
  545:       END IF
  546: *     Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
  547: *     part of the spectrum. All desired eigenvalues are contained in
  548: *     (WL,WU]
  549: 
  550: 
  551:       IF( WANTZ ) THEN
  552: *
  553: *        Compute the desired eigenvectors corresponding to the computed
  554: *        eigenvalues
  555: *
  556:          CALL ZLARRV( N, WL, WU, D, E,
  557:      $                PIVMIN, IWORK( IINSPL ), M,
  558:      $                1, M, MINRGP, RTOL1, RTOL2,
  559:      $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
  560:      $                IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
  561:      $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
  562:          IF( IINFO.NE.0 ) THEN
  563:             INFO = 20 + ABS( IINFO )
  564:             RETURN
  565:          END IF
  566:       ELSE
  567: *        DLARRE computes eigenvalues of the (shifted) root representation
  568: *        ZLARRV returns the eigenvalues of the unshifted matrix.
  569: *        However, if the eigenvectors are not desired by the user, we need
  570: *        to apply the corresponding shifts from DLARRE to obtain the
  571: *        eigenvalues of the original matrix.
  572:          DO 20 J = 1, M
  573:             ITMP = IWORK( IINDBL+J-1 )
  574:             W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
  575:  20      CONTINUE
  576:       END IF
  577: *
  578: 
  579:       IF ( TRYRAC ) THEN
  580: *        Refine computed eigenvalues so that they are relatively accurate
  581: *        with respect to the original matrix T.
  582:          IBEGIN = 1
  583:          WBEGIN = 1
  584:          DO 39  JBLK = 1, IWORK( IINDBL+M-1 )
  585:             IEND = IWORK( IINSPL+JBLK-1 )
  586:             IN = IEND - IBEGIN + 1
  587:             WEND = WBEGIN - 1
  588: *           check if any eigenvalues have to be refined in this block
  589:  36         CONTINUE
  590:             IF( WEND.LT.M ) THEN
  591:                IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
  592:                   WEND = WEND + 1
  593:                   GO TO 36
  594:                END IF
  595:             END IF
  596:             IF( WEND.LT.WBEGIN ) THEN
  597:                IBEGIN = IEND + 1
  598:                GO TO 39
  599:             END IF
  600: 
  601:             OFFSET = IWORK(IINDW+WBEGIN-1)-1
  602:             IFIRST = IWORK(IINDW+WBEGIN-1)
  603:             ILAST = IWORK(IINDW+WEND-1)
  604:             RTOL2 = FOUR * EPS
  605:             CALL DLARRJ( IN,
  606:      $                   WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
  607:      $                   IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
  608:      $                   WORK( INDERR+WBEGIN-1 ),
  609:      $                   WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
  610:      $                   TNRM, IINFO )
  611:             IBEGIN = IEND + 1
  612:             WBEGIN = WEND + 1
  613:  39      CONTINUE
  614:       ENDIF
  615: *
  616: *     If matrix was scaled, then rescale eigenvalues appropriately.
  617: *
  618:       IF( SCALE.NE.ONE ) THEN
  619:          CALL DSCAL( M, ONE / SCALE, W, 1 )
  620:       END IF
  621: *
  622: *     If eigenvalues are not in increasing order, then sort them,
  623: *     possibly along with eigenvectors.
  624: *
  625:       IF( NSPLIT.GT.1 ) THEN
  626:          IF( .NOT. WANTZ ) THEN
  627:             CALL DLASRT( 'I', M, W, IINFO )
  628:             IF( IINFO.NE.0 ) THEN
  629:                INFO = 3
  630:                RETURN
  631:             END IF
  632:          ELSE
  633:             DO 60 J = 1, M - 1
  634:                I = 0
  635:                TMP = W( J )
  636:                DO 50 JJ = J + 1, M
  637:                   IF( W( JJ ).LT.TMP ) THEN
  638:                      I = JJ
  639:                      TMP = W( JJ )
  640:                   END IF
  641:  50            CONTINUE
  642:                IF( I.NE.0 ) THEN
  643:                   W( I ) = W( J )
  644:                   W( J ) = TMP
  645:                   IF( WANTZ ) THEN
  646:                      CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  647:                      ITMP = ISUPPZ( 2*I-1 )
  648:                      ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
  649:                      ISUPPZ( 2*J-1 ) = ITMP
  650:                      ITMP = ISUPPZ( 2*I )
  651:                      ISUPPZ( 2*I ) = ISUPPZ( 2*J )
  652:                      ISUPPZ( 2*J ) = ITMP
  653:                   END IF
  654:                END IF
  655:  60         CONTINUE
  656:          END IF
  657:       ENDIF
  658: *
  659: *
  660:       WORK( 1 ) = LWMIN
  661:       IWORK( 1 ) = LIWMIN
  662:       RETURN
  663: *
  664: *     End of ZSTEMR
  665: *
  666:       END

CVSweb interface <joel.bertrand@systella.fr>