File:  [local] / rpl / lapack / lapack / zstemr.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:42 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b ZSTEMR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZSTEMR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zstemr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zstemr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zstemr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
   22: *                          M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
   23: *                          IWORK, LIWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE
   27: *       LOGICAL            TRYRAC
   28: *       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
   29: *       DOUBLE PRECISION VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            ISUPPZ( * ), IWORK( * )
   33: *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
   34: *       COMPLEX*16         Z( LDZ, * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZSTEMR computes selected eigenvalues and, optionally, eigenvectors
   44: *> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
   45: *> a well defined set of pairwise different real eigenvalues, the corresponding
   46: *> real eigenvectors are pairwise orthogonal.
   47: *>
   48: *> The spectrum may be computed either completely or partially by specifying
   49: *> either an interval (VL,VU] or a range of indices IL:IU for the desired
   50: *> eigenvalues.
   51: *>
   52: *> Depending on the number of desired eigenvalues, these are computed either
   53: *> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
   54: *> computed by the use of various suitable L D L^T factorizations near clusters
   55: *> of close eigenvalues (referred to as RRRs, Relatively Robust
   56: *> Representations). An informal sketch of the algorithm follows.
   57: *>
   58: *> For each unreduced block (submatrix) of T,
   59: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
   60: *>        define all the wanted eigenvalues to high relative accuracy.
   61: *>        This means that small relative changes in the entries of D and L
   62: *>        cause only small relative changes in the eigenvalues and
   63: *>        eigenvectors. The standard (unfactored) representation of the
   64: *>        tridiagonal matrix T does not have this property in general.
   65: *>    (b) Compute the eigenvalues to suitable accuracy.
   66: *>        If the eigenvectors are desired, the algorithm attains full
   67: *>        accuracy of the computed eigenvalues only right before
   68: *>        the corresponding vectors have to be computed, see steps c) and d).
   69: *>    (c) For each cluster of close eigenvalues, select a new
   70: *>        shift close to the cluster, find a new factorization, and refine
   71: *>        the shifted eigenvalues to suitable accuracy.
   72: *>    (d) For each eigenvalue with a large enough relative separation compute
   73: *>        the corresponding eigenvector by forming a rank revealing twisted
   74: *>        factorization. Go back to (c) for any clusters that remain.
   75: *>
   76: *> For more details, see:
   77: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   78: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   79: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   80: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   81: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   82: *>   2004.  Also LAPACK Working Note 154.
   83: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   84: *>   tridiagonal eigenvalue/eigenvector problem",
   85: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
   86: *>   UC Berkeley, May 1997.
   87: *>
   88: *> Further Details
   89: *> 1.ZSTEMR works only on machines which follow IEEE-754
   90: *> floating-point standard in their handling of infinities and NaNs.
   91: *> This permits the use of efficient inner loops avoiding a check for
   92: *> zero divisors.
   93: *>
   94: *> 2. LAPACK routines can be used to reduce a complex Hermitean matrix to
   95: *> real symmetric tridiagonal form.
   96: *>
   97: *> (Any complex Hermitean tridiagonal matrix has real values on its diagonal
   98: *> and potentially complex numbers on its off-diagonals. By applying a
   99: *> similarity transform with an appropriate diagonal matrix
  100: *> diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean
  101: *> matrix can be transformed into a real symmetric matrix and complex
  102: *> arithmetic can be entirely avoided.)
  103: *>
  104: *> While the eigenvectors of the real symmetric tridiagonal matrix are real,
  105: *> the eigenvectors of original complex Hermitean matrix have complex entries
  106: *> in general.
  107: *> Since LAPACK drivers overwrite the matrix data with the eigenvectors,
  108: *> ZSTEMR accepts complex workspace to facilitate interoperability
  109: *> with ZUNMTR or ZUPMTR.
  110: *> \endverbatim
  111: *
  112: *  Arguments:
  113: *  ==========
  114: *
  115: *> \param[in] JOBZ
  116: *> \verbatim
  117: *>          JOBZ is CHARACTER*1
  118: *>          = 'N':  Compute eigenvalues only;
  119: *>          = 'V':  Compute eigenvalues and eigenvectors.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] RANGE
  123: *> \verbatim
  124: *>          RANGE is CHARACTER*1
  125: *>          = 'A': all eigenvalues will be found.
  126: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
  127: *>                 will be found.
  128: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] N
  132: *> \verbatim
  133: *>          N is INTEGER
  134: *>          The order of the matrix.  N >= 0.
  135: *> \endverbatim
  136: *>
  137: *> \param[in,out] D
  138: *> \verbatim
  139: *>          D is DOUBLE PRECISION array, dimension (N)
  140: *>          On entry, the N diagonal elements of the tridiagonal matrix
  141: *>          T. On exit, D is overwritten.
  142: *> \endverbatim
  143: *>
  144: *> \param[in,out] E
  145: *> \verbatim
  146: *>          E is DOUBLE PRECISION array, dimension (N)
  147: *>          On entry, the (N-1) subdiagonal elements of the tridiagonal
  148: *>          matrix T in elements 1 to N-1 of E. E(N) need not be set on
  149: *>          input, but is used internally as workspace.
  150: *>          On exit, E is overwritten.
  151: *> \endverbatim
  152: *>
  153: *> \param[in] VL
  154: *> \verbatim
  155: *>          VL is DOUBLE PRECISION
  156: *> \endverbatim
  157: *>
  158: *> \param[in] VU
  159: *> \verbatim
  160: *>          VU is DOUBLE PRECISION
  161: *>
  162: *>          If RANGE='V', the lower and upper bounds of the interval to
  163: *>          be searched for eigenvalues. VL < VU.
  164: *>          Not referenced if RANGE = 'A' or 'I'.
  165: *> \endverbatim
  166: *>
  167: *> \param[in] IL
  168: *> \verbatim
  169: *>          IL is INTEGER
  170: *> \endverbatim
  171: *>
  172: *> \param[in] IU
  173: *> \verbatim
  174: *>          IU is INTEGER
  175: *>
  176: *>          If RANGE='I', the indices (in ascending order) of the
  177: *>          smallest and largest eigenvalues to be returned.
  178: *>          1 <= IL <= IU <= N, if N > 0.
  179: *>          Not referenced if RANGE = 'A' or 'V'.
  180: *> \endverbatim
  181: *>
  182: *> \param[out] M
  183: *> \verbatim
  184: *>          M is INTEGER
  185: *>          The total number of eigenvalues found.  0 <= M <= N.
  186: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  187: *> \endverbatim
  188: *>
  189: *> \param[out] W
  190: *> \verbatim
  191: *>          W is DOUBLE PRECISION array, dimension (N)
  192: *>          The first M elements contain the selected eigenvalues in
  193: *>          ascending order.
  194: *> \endverbatim
  195: *>
  196: *> \param[out] Z
  197: *> \verbatim
  198: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M) )
  199: *>          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
  200: *>          contain the orthonormal eigenvectors of the matrix T
  201: *>          corresponding to the selected eigenvalues, with the i-th
  202: *>          column of Z holding the eigenvector associated with W(i).
  203: *>          If JOBZ = 'N', then Z is not referenced.
  204: *>          Note: the user must ensure that at least max(1,M) columns are
  205: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  206: *>          is not known in advance and can be computed with a workspace
  207: *>          query by setting NZC = -1, see below.
  208: *> \endverbatim
  209: *>
  210: *> \param[in] LDZ
  211: *> \verbatim
  212: *>          LDZ is INTEGER
  213: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  214: *>          JOBZ = 'V', then LDZ >= max(1,N).
  215: *> \endverbatim
  216: *>
  217: *> \param[in] NZC
  218: *> \verbatim
  219: *>          NZC is INTEGER
  220: *>          The number of eigenvectors to be held in the array Z.
  221: *>          If RANGE = 'A', then NZC >= max(1,N).
  222: *>          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
  223: *>          If RANGE = 'I', then NZC >= IU-IL+1.
  224: *>          If NZC = -1, then a workspace query is assumed; the
  225: *>          routine calculates the number of columns of the array Z that
  226: *>          are needed to hold the eigenvectors.
  227: *>          This value is returned as the first entry of the Z array, and
  228: *>          no error message related to NZC is issued by XERBLA.
  229: *> \endverbatim
  230: *>
  231: *> \param[out] ISUPPZ
  232: *> \verbatim
  233: *>          ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) )
  234: *>          The support of the eigenvectors in Z, i.e., the indices
  235: *>          indicating the nonzero elements in Z. The i-th computed eigenvector
  236: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  237: *>          ISUPPZ( 2*i ). This is relevant in the case when the matrix
  238: *>          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
  239: *> \endverbatim
  240: *>
  241: *> \param[in,out] TRYRAC
  242: *> \verbatim
  243: *>          TRYRAC is LOGICAL
  244: *>          If TRYRAC.EQ..TRUE., indicates that the code should check whether
  245: *>          the tridiagonal matrix defines its eigenvalues to high relative
  246: *>          accuracy.  If so, the code uses relative-accuracy preserving
  247: *>          algorithms that might be (a bit) slower depending on the matrix.
  248: *>          If the matrix does not define its eigenvalues to high relative
  249: *>          accuracy, the code can uses possibly faster algorithms.
  250: *>          If TRYRAC.EQ..FALSE., the code is not required to guarantee
  251: *>          relatively accurate eigenvalues and can use the fastest possible
  252: *>          techniques.
  253: *>          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
  254: *>          does not define its eigenvalues to high relative accuracy.
  255: *> \endverbatim
  256: *>
  257: *> \param[out] WORK
  258: *> \verbatim
  259: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
  260: *>          On exit, if INFO = 0, WORK(1) returns the optimal
  261: *>          (and minimal) LWORK.
  262: *> \endverbatim
  263: *>
  264: *> \param[in] LWORK
  265: *> \verbatim
  266: *>          LWORK is INTEGER
  267: *>          The dimension of the array WORK. LWORK >= max(1,18*N)
  268: *>          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
  269: *>          If LWORK = -1, then a workspace query is assumed; the routine
  270: *>          only calculates the optimal size of the WORK array, returns
  271: *>          this value as the first entry of the WORK array, and no error
  272: *>          message related to LWORK is issued by XERBLA.
  273: *> \endverbatim
  274: *>
  275: *> \param[out] IWORK
  276: *> \verbatim
  277: *>          IWORK is INTEGER array, dimension (LIWORK)
  278: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  279: *> \endverbatim
  280: *>
  281: *> \param[in] LIWORK
  282: *> \verbatim
  283: *>          LIWORK is INTEGER
  284: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
  285: *>          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
  286: *>          if only the eigenvalues are to be computed.
  287: *>          If LIWORK = -1, then a workspace query is assumed; the
  288: *>          routine only calculates the optimal size of the IWORK array,
  289: *>          returns this value as the first entry of the IWORK array, and
  290: *>          no error message related to LIWORK is issued by XERBLA.
  291: *> \endverbatim
  292: *>
  293: *> \param[out] INFO
  294: *> \verbatim
  295: *>          INFO is INTEGER
  296: *>          On exit, INFO
  297: *>          = 0:  successful exit
  298: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  299: *>          > 0:  if INFO = 1X, internal error in DLARRE,
  300: *>                if INFO = 2X, internal error in ZLARRV.
  301: *>                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
  302: *>                the nonzero error code returned by DLARRE or
  303: *>                ZLARRV, respectively.
  304: *> \endverbatim
  305: *
  306: *  Authors:
  307: *  ========
  308: *
  309: *> \author Univ. of Tennessee 
  310: *> \author Univ. of California Berkeley 
  311: *> \author Univ. of Colorado Denver 
  312: *> \author NAG Ltd. 
  313: *
  314: *> \date November 2013
  315: *
  316: *> \ingroup complex16OTHERcomputational
  317: *
  318: *> \par Contributors:
  319: *  ==================
  320: *>
  321: *> Beresford Parlett, University of California, Berkeley, USA \n
  322: *> Jim Demmel, University of California, Berkeley, USA \n
  323: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  324: *> Osni Marques, LBNL/NERSC, USA \n
  325: *> Christof Voemel, University of California, Berkeley, USA \n
  326: *
  327: *  =====================================================================
  328:       SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
  329:      $                   M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
  330:      $                   IWORK, LIWORK, INFO )
  331: *
  332: *  -- LAPACK computational routine (version 3.5.0) --
  333: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  334: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  335: *     November 2013
  336: *
  337: *     .. Scalar Arguments ..
  338:       CHARACTER          JOBZ, RANGE
  339:       LOGICAL            TRYRAC
  340:       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
  341:       DOUBLE PRECISION VL, VU
  342: *     ..
  343: *     .. Array Arguments ..
  344:       INTEGER            ISUPPZ( * ), IWORK( * )
  345:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
  346:       COMPLEX*16         Z( LDZ, * )
  347: *     ..
  348: *
  349: *  =====================================================================
  350: *
  351: *     .. Parameters ..
  352:       DOUBLE PRECISION   ZERO, ONE, FOUR, MINRGP
  353:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  354:      $                     FOUR = 4.0D0,
  355:      $                     MINRGP = 1.0D-3 )
  356: *     ..
  357: *     .. Local Scalars ..
  358:       LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
  359:       INTEGER            I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
  360:      $                   IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
  361:      $                   INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
  362:      $                   ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
  363:      $                   NZCMIN, OFFSET, WBEGIN, WEND
  364:       DOUBLE PRECISION   BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
  365:      $                   RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
  366:      $                   THRESH, TMP, TNRM, WL, WU
  367: *     ..
  368: *     ..
  369: *     .. External Functions ..
  370:       LOGICAL            LSAME
  371:       DOUBLE PRECISION   DLAMCH, DLANST
  372:       EXTERNAL           LSAME, DLAMCH, DLANST
  373: *     ..
  374: *     .. External Subroutines ..
  375:       EXTERNAL           DCOPY, DLAE2, DLAEV2, DLARRC, DLARRE, DLARRJ,
  376:      $                   DLARRR, DLASRT, DSCAL, XERBLA, ZLARRV, ZSWAP
  377: *     ..
  378: *     .. Intrinsic Functions ..
  379:       INTRINSIC          MAX, MIN, SQRT
  380: 
  381: 
  382: *     ..
  383: *     .. Executable Statements ..
  384: *
  385: *     Test the input parameters.
  386: *
  387:       WANTZ = LSAME( JOBZ, 'V' )
  388:       ALLEIG = LSAME( RANGE, 'A' )
  389:       VALEIG = LSAME( RANGE, 'V' )
  390:       INDEIG = LSAME( RANGE, 'I' )
  391: *
  392:       LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
  393:       ZQUERY = ( NZC.EQ.-1 )
  394: 
  395: *     DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
  396: *     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
  397: *     Furthermore, ZLARRV needs WORK of size 12*N, IWORK of size 7*N.
  398:       IF( WANTZ ) THEN
  399:          LWMIN = 18*N
  400:          LIWMIN = 10*N
  401:       ELSE
  402: *        need less workspace if only the eigenvalues are wanted
  403:          LWMIN = 12*N
  404:          LIWMIN = 8*N
  405:       ENDIF
  406: 
  407:       WL = ZERO
  408:       WU = ZERO
  409:       IIL = 0
  410:       IIU = 0
  411:       NSPLIT = 0
  412:       
  413:       IF( VALEIG ) THEN
  414: *        We do not reference VL, VU in the cases RANGE = 'I','A'
  415: *        The interval (WL, WU] contains all the wanted eigenvalues.
  416: *        It is either given by the user or computed in DLARRE.
  417:          WL = VL
  418:          WU = VU
  419:       ELSEIF( INDEIG ) THEN
  420: *        We do not reference IL, IU in the cases RANGE = 'V','A'
  421:          IIL = IL
  422:          IIU = IU
  423:       ENDIF
  424: *
  425:       INFO = 0
  426:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  427:          INFO = -1
  428:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  429:          INFO = -2
  430:       ELSE IF( N.LT.0 ) THEN
  431:          INFO = -3
  432:       ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
  433:          INFO = -7
  434:       ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
  435:          INFO = -8
  436:       ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
  437:          INFO = -9
  438:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  439:          INFO = -13
  440:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  441:          INFO = -17
  442:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  443:          INFO = -19
  444:       END IF
  445: *
  446: *     Get machine constants.
  447: *
  448:       SAFMIN = DLAMCH( 'Safe minimum' )
  449:       EPS = DLAMCH( 'Precision' )
  450:       SMLNUM = SAFMIN / EPS
  451:       BIGNUM = ONE / SMLNUM
  452:       RMIN = SQRT( SMLNUM )
  453:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  454: *
  455:       IF( INFO.EQ.0 ) THEN
  456:          WORK( 1 ) = LWMIN
  457:          IWORK( 1 ) = LIWMIN
  458: *
  459:          IF( WANTZ .AND. ALLEIG ) THEN
  460:             NZCMIN = N
  461:          ELSE IF( WANTZ .AND. VALEIG ) THEN
  462:             CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN,
  463:      $                            NZCMIN, ITMP, ITMP2, INFO )
  464:          ELSE IF( WANTZ .AND. INDEIG ) THEN
  465:             NZCMIN = IIU-IIL+1
  466:          ELSE
  467: *           WANTZ .EQ. FALSE.
  468:             NZCMIN = 0
  469:          ENDIF
  470:          IF( ZQUERY .AND. INFO.EQ.0 ) THEN
  471:             Z( 1,1 ) = NZCMIN
  472:          ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
  473:             INFO = -14
  474:          END IF
  475:       END IF
  476: 
  477:       IF( INFO.NE.0 ) THEN
  478: *
  479:          CALL XERBLA( 'ZSTEMR', -INFO )
  480: *
  481:          RETURN
  482:       ELSE IF( LQUERY .OR. ZQUERY ) THEN
  483:          RETURN
  484:       END IF
  485: *
  486: *     Handle N = 0, 1, and 2 cases immediately
  487: *
  488:       M = 0
  489:       IF( N.EQ.0 )
  490:      $   RETURN
  491: *
  492:       IF( N.EQ.1 ) THEN
  493:          IF( ALLEIG .OR. INDEIG ) THEN
  494:             M = 1
  495:             W( 1 ) = D( 1 )
  496:          ELSE
  497:             IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
  498:                M = 1
  499:                W( 1 ) = D( 1 )
  500:             END IF
  501:          END IF
  502:          IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  503:             Z( 1, 1 ) = ONE
  504:             ISUPPZ(1) = 1
  505:             ISUPPZ(2) = 1
  506:          END IF
  507:          RETURN
  508:       END IF
  509: *
  510:       IF( N.EQ.2 ) THEN
  511:          IF( .NOT.WANTZ ) THEN
  512:             CALL DLAE2( D(1), E(1), D(2), R1, R2 )
  513:          ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  514:             CALL DLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
  515:          END IF
  516:          IF( ALLEIG.OR.
  517:      $      (VALEIG.AND.(R2.GT.WL).AND.
  518:      $                  (R2.LE.WU)).OR.
  519:      $      (INDEIG.AND.(IIL.EQ.1)) ) THEN
  520:             M = M+1
  521:             W( M ) = R2
  522:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  523:                Z( 1, M ) = -SN
  524:                Z( 2, M ) = CS
  525: *              Note: At most one of SN and CS can be zero.
  526:                IF (SN.NE.ZERO) THEN
  527:                   IF (CS.NE.ZERO) THEN
  528:                      ISUPPZ(2*M-1) = 1
  529:                      ISUPPZ(2*M-1) = 2
  530:                   ELSE
  531:                      ISUPPZ(2*M-1) = 1
  532:                      ISUPPZ(2*M-1) = 1
  533:                   END IF
  534:                ELSE
  535:                   ISUPPZ(2*M-1) = 2
  536:                   ISUPPZ(2*M) = 2
  537:                END IF
  538:             ENDIF
  539:          ENDIF
  540:          IF( ALLEIG.OR.
  541:      $      (VALEIG.AND.(R1.GT.WL).AND.
  542:      $                  (R1.LE.WU)).OR.
  543:      $      (INDEIG.AND.(IIU.EQ.2)) ) THEN
  544:             M = M+1
  545:             W( M ) = R1
  546:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  547:                Z( 1, M ) = CS
  548:                Z( 2, M ) = SN
  549: *              Note: At most one of SN and CS can be zero.
  550:                IF (SN.NE.ZERO) THEN
  551:                   IF (CS.NE.ZERO) THEN
  552:                      ISUPPZ(2*M-1) = 1
  553:                      ISUPPZ(2*M-1) = 2
  554:                   ELSE
  555:                      ISUPPZ(2*M-1) = 1
  556:                      ISUPPZ(2*M-1) = 1
  557:                   END IF
  558:                ELSE
  559:                   ISUPPZ(2*M-1) = 2
  560:                   ISUPPZ(2*M) = 2
  561:                END IF
  562:             ENDIF
  563:          ENDIF
  564:       ELSE
  565: 
  566: *        Continue with general N
  567: 
  568:          INDGRS = 1
  569:          INDERR = 2*N + 1
  570:          INDGP = 3*N + 1
  571:          INDD = 4*N + 1
  572:          INDE2 = 5*N + 1
  573:          INDWRK = 6*N + 1
  574: *
  575:          IINSPL = 1
  576:          IINDBL = N + 1
  577:          IINDW = 2*N + 1
  578:          IINDWK = 3*N + 1
  579: *
  580: *        Scale matrix to allowable range, if necessary.
  581: *        The allowable range is related to the PIVMIN parameter; see the
  582: *        comments in DLARRD.  The preference for scaling small values
  583: *        up is heuristic; we expect users' matrices not to be close to the
  584: *        RMAX threshold.
  585: *
  586:          SCALE = ONE
  587:          TNRM = DLANST( 'M', N, D, E )
  588:          IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
  589:             SCALE = RMIN / TNRM
  590:          ELSE IF( TNRM.GT.RMAX ) THEN
  591:             SCALE = RMAX / TNRM
  592:          END IF
  593:          IF( SCALE.NE.ONE ) THEN
  594:             CALL DSCAL( N, SCALE, D, 1 )
  595:             CALL DSCAL( N-1, SCALE, E, 1 )
  596:             TNRM = TNRM*SCALE
  597:             IF( VALEIG ) THEN
  598: *              If eigenvalues in interval have to be found,
  599: *              scale (WL, WU] accordingly
  600:                WL = WL*SCALE
  601:                WU = WU*SCALE
  602:             ENDIF
  603:          END IF
  604: *
  605: *        Compute the desired eigenvalues of the tridiagonal after splitting
  606: *        into smaller subblocks if the corresponding off-diagonal elements
  607: *        are small
  608: *        THRESH is the splitting parameter for DLARRE
  609: *        A negative THRESH forces the old splitting criterion based on the
  610: *        size of the off-diagonal. A positive THRESH switches to splitting
  611: *        which preserves relative accuracy.
  612: *
  613:          IF( TRYRAC ) THEN
  614: *           Test whether the matrix warrants the more expensive relative approach.
  615:             CALL DLARRR( N, D, E, IINFO )
  616:          ELSE
  617: *           The user does not care about relative accurately eigenvalues
  618:             IINFO = -1
  619:          ENDIF
  620: *        Set the splitting criterion
  621:          IF (IINFO.EQ.0) THEN
  622:             THRESH = EPS
  623:          ELSE
  624:             THRESH = -EPS
  625: *           relative accuracy is desired but T does not guarantee it
  626:             TRYRAC = .FALSE.
  627:          ENDIF
  628: *
  629:          IF( TRYRAC ) THEN
  630: *           Copy original diagonal, needed to guarantee relative accuracy
  631:             CALL DCOPY(N,D,1,WORK(INDD),1)
  632:          ENDIF
  633: *        Store the squares of the offdiagonal values of T
  634:          DO 5 J = 1, N-1
  635:             WORK( INDE2+J-1 ) = E(J)**2
  636:  5    CONTINUE
  637: 
  638: *        Set the tolerance parameters for bisection
  639:          IF( .NOT.WANTZ ) THEN
  640: *           DLARRE computes the eigenvalues to full precision.
  641:             RTOL1 = FOUR * EPS
  642:             RTOL2 = FOUR * EPS
  643:          ELSE
  644: *           DLARRE computes the eigenvalues to less than full precision.
  645: *           ZLARRV will refine the eigenvalue approximations, and we only
  646: *           need less accurate initial bisection in DLARRE.
  647: *           Note: these settings do only affect the subset case and DLARRE
  648:             RTOL1 = SQRT(EPS)
  649:             RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )
  650:          ENDIF
  651:          CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
  652:      $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
  653:      $             IWORK( IINSPL ), M, W, WORK( INDERR ),
  654:      $             WORK( INDGP ), IWORK( IINDBL ),
  655:      $             IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
  656:      $             WORK( INDWRK ), IWORK( IINDWK ), IINFO )
  657:          IF( IINFO.NE.0 ) THEN
  658:             INFO = 10 + ABS( IINFO )
  659:             RETURN
  660:          END IF
  661: *        Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
  662: *        part of the spectrum. All desired eigenvalues are contained in
  663: *        (WL,WU]
  664: 
  665: 
  666:          IF( WANTZ ) THEN
  667: *
  668: *           Compute the desired eigenvectors corresponding to the computed
  669: *           eigenvalues
  670: *
  671:             CALL ZLARRV( N, WL, WU, D, E,
  672:      $                PIVMIN, IWORK( IINSPL ), M,
  673:      $                1, M, MINRGP, RTOL1, RTOL2,
  674:      $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
  675:      $                IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
  676:      $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
  677:             IF( IINFO.NE.0 ) THEN
  678:                INFO = 20 + ABS( IINFO )
  679:                RETURN
  680:             END IF
  681:          ELSE
  682: *           DLARRE computes eigenvalues of the (shifted) root representation
  683: *           ZLARRV returns the eigenvalues of the unshifted matrix.
  684: *           However, if the eigenvectors are not desired by the user, we need
  685: *           to apply the corresponding shifts from DLARRE to obtain the
  686: *           eigenvalues of the original matrix.
  687:             DO 20 J = 1, M
  688:                ITMP = IWORK( IINDBL+J-1 )
  689:                W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
  690:  20      CONTINUE
  691:          END IF
  692: *
  693: 
  694:          IF ( TRYRAC ) THEN
  695: *           Refine computed eigenvalues so that they are relatively accurate
  696: *           with respect to the original matrix T.
  697:             IBEGIN = 1
  698:             WBEGIN = 1
  699:             DO 39  JBLK = 1, IWORK( IINDBL+M-1 )
  700:                IEND = IWORK( IINSPL+JBLK-1 )
  701:                IN = IEND - IBEGIN + 1
  702:                WEND = WBEGIN - 1
  703: *              check if any eigenvalues have to be refined in this block
  704:  36         CONTINUE
  705:                IF( WEND.LT.M ) THEN
  706:                   IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
  707:                      WEND = WEND + 1
  708:                      GO TO 36
  709:                   END IF
  710:                END IF
  711:                IF( WEND.LT.WBEGIN ) THEN
  712:                   IBEGIN = IEND + 1
  713:                   GO TO 39
  714:                END IF
  715: 
  716:                OFFSET = IWORK(IINDW+WBEGIN-1)-1
  717:                IFIRST = IWORK(IINDW+WBEGIN-1)
  718:                ILAST = IWORK(IINDW+WEND-1)
  719:                RTOL2 = FOUR * EPS
  720:                CALL DLARRJ( IN,
  721:      $                   WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
  722:      $                   IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
  723:      $                   WORK( INDERR+WBEGIN-1 ),
  724:      $                   WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
  725:      $                   TNRM, IINFO )
  726:                IBEGIN = IEND + 1
  727:                WBEGIN = WEND + 1
  728:  39      CONTINUE
  729:          ENDIF
  730: *
  731: *        If matrix was scaled, then rescale eigenvalues appropriately.
  732: *
  733:          IF( SCALE.NE.ONE ) THEN
  734:             CALL DSCAL( M, ONE / SCALE, W, 1 )
  735:          END IF
  736:       END IF
  737: *
  738: *     If eigenvalues are not in increasing order, then sort them,
  739: *     possibly along with eigenvectors.
  740: *
  741:       IF( NSPLIT.GT.1 .OR. N.EQ.2 ) THEN
  742:          IF( .NOT. WANTZ ) THEN
  743:             CALL DLASRT( 'I', M, W, IINFO )
  744:             IF( IINFO.NE.0 ) THEN
  745:                INFO = 3
  746:                RETURN
  747:             END IF
  748:          ELSE
  749:             DO 60 J = 1, M - 1
  750:                I = 0
  751:                TMP = W( J )
  752:                DO 50 JJ = J + 1, M
  753:                   IF( W( JJ ).LT.TMP ) THEN
  754:                      I = JJ
  755:                      TMP = W( JJ )
  756:                   END IF
  757:  50            CONTINUE
  758:                IF( I.NE.0 ) THEN
  759:                   W( I ) = W( J )
  760:                   W( J ) = TMP
  761:                   IF( WANTZ ) THEN
  762:                      CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  763:                      ITMP = ISUPPZ( 2*I-1 )
  764:                      ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
  765:                      ISUPPZ( 2*J-1 ) = ITMP
  766:                      ITMP = ISUPPZ( 2*I )
  767:                      ISUPPZ( 2*I ) = ISUPPZ( 2*J )
  768:                      ISUPPZ( 2*J ) = ITMP
  769:                   END IF
  770:                END IF
  771:  60         CONTINUE
  772:          END IF
  773:       ENDIF
  774: *
  775: *
  776:       WORK( 1 ) = LWMIN
  777:       IWORK( 1 ) = LIWMIN
  778:       RETURN
  779: *
  780: *     End of ZSTEMR
  781: *
  782:       END

CVSweb interface <joel.bertrand@systella.fr>