Annotation of rpl/lapack/lapack/zstemr.f, revision 1.9

1.8       bertrand    1: *> \brief \b ZSTEMR
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZSTEMR + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zstemr.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zstemr.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zstemr.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
                     22: *                          M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
                     23: *                          IWORK, LIWORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBZ, RANGE
                     27: *       LOGICAL            TRYRAC
                     28: *       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
                     29: *       DOUBLE PRECISION VL, VU
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       INTEGER            ISUPPZ( * ), IWORK( * )
                     33: *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
                     34: *       COMPLEX*16         Z( LDZ, * )
                     35: *       ..
                     36: *  
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> ZSTEMR computes selected eigenvalues and, optionally, eigenvectors
                     44: *> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
                     45: *> a well defined set of pairwise different real eigenvalues, the corresponding
                     46: *> real eigenvectors are pairwise orthogonal.
                     47: *>
                     48: *> The spectrum may be computed either completely or partially by specifying
                     49: *> either an interval (VL,VU] or a range of indices IL:IU for the desired
                     50: *> eigenvalues.
                     51: *>
                     52: *> Depending on the number of desired eigenvalues, these are computed either
                     53: *> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
                     54: *> computed by the use of various suitable L D L^T factorizations near clusters
                     55: *> of close eigenvalues (referred to as RRRs, Relatively Robust
                     56: *> Representations). An informal sketch of the algorithm follows.
                     57: *>
                     58: *> For each unreduced block (submatrix) of T,
                     59: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
                     60: *>        define all the wanted eigenvalues to high relative accuracy.
                     61: *>        This means that small relative changes in the entries of D and L
                     62: *>        cause only small relative changes in the eigenvalues and
                     63: *>        eigenvectors. The standard (unfactored) representation of the
                     64: *>        tridiagonal matrix T does not have this property in general.
                     65: *>    (b) Compute the eigenvalues to suitable accuracy.
                     66: *>        If the eigenvectors are desired, the algorithm attains full
                     67: *>        accuracy of the computed eigenvalues only right before
                     68: *>        the corresponding vectors have to be computed, see steps c) and d).
                     69: *>    (c) For each cluster of close eigenvalues, select a new
                     70: *>        shift close to the cluster, find a new factorization, and refine
                     71: *>        the shifted eigenvalues to suitable accuracy.
                     72: *>    (d) For each eigenvalue with a large enough relative separation compute
                     73: *>        the corresponding eigenvector by forming a rank revealing twisted
                     74: *>        factorization. Go back to (c) for any clusters that remain.
                     75: *>
                     76: *> For more details, see:
                     77: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
                     78: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
                     79: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
                     80: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
                     81: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
                     82: *>   2004.  Also LAPACK Working Note 154.
                     83: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
                     84: *>   tridiagonal eigenvalue/eigenvector problem",
                     85: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
                     86: *>   UC Berkeley, May 1997.
                     87: *>
                     88: *> Further Details
                     89: *> 1.ZSTEMR works only on machines which follow IEEE-754
                     90: *> floating-point standard in their handling of infinities and NaNs.
                     91: *> This permits the use of efficient inner loops avoiding a check for
                     92: *> zero divisors.
                     93: *>
                     94: *> 2. LAPACK routines can be used to reduce a complex Hermitean matrix to
                     95: *> real symmetric tridiagonal form.
                     96: *>
                     97: *> (Any complex Hermitean tridiagonal matrix has real values on its diagonal
                     98: *> and potentially complex numbers on its off-diagonals. By applying a
                     99: *> similarity transform with an appropriate diagonal matrix
                    100: *> diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean
                    101: *> matrix can be transformed into a real symmetric matrix and complex
                    102: *> arithmetic can be entirely avoided.)
                    103: *>
                    104: *> While the eigenvectors of the real symmetric tridiagonal matrix are real,
                    105: *> the eigenvectors of original complex Hermitean matrix have complex entries
                    106: *> in general.
                    107: *> Since LAPACK drivers overwrite the matrix data with the eigenvectors,
                    108: *> ZSTEMR accepts complex workspace to facilitate interoperability
                    109: *> with ZUNMTR or ZUPMTR.
                    110: *> \endverbatim
                    111: *
                    112: *  Arguments:
                    113: *  ==========
                    114: *
                    115: *> \param[in] JOBZ
                    116: *> \verbatim
                    117: *>          JOBZ is CHARACTER*1
                    118: *>          = 'N':  Compute eigenvalues only;
                    119: *>          = 'V':  Compute eigenvalues and eigenvectors.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] RANGE
                    123: *> \verbatim
                    124: *>          RANGE is CHARACTER*1
                    125: *>          = 'A': all eigenvalues will be found.
                    126: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                    127: *>                 will be found.
                    128: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in] N
                    132: *> \verbatim
                    133: *>          N is INTEGER
                    134: *>          The order of the matrix.  N >= 0.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in,out] D
                    138: *> \verbatim
                    139: *>          D is DOUBLE PRECISION array, dimension (N)
                    140: *>          On entry, the N diagonal elements of the tridiagonal matrix
                    141: *>          T. On exit, D is overwritten.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in,out] E
                    145: *> \verbatim
                    146: *>          E is DOUBLE PRECISION array, dimension (N)
                    147: *>          On entry, the (N-1) subdiagonal elements of the tridiagonal
                    148: *>          matrix T in elements 1 to N-1 of E. E(N) need not be set on
                    149: *>          input, but is used internally as workspace.
                    150: *>          On exit, E is overwritten.
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[in] VL
                    154: *> \verbatim
                    155: *>          VL is DOUBLE PRECISION
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[in] VU
                    159: *> \verbatim
                    160: *>          VU is DOUBLE PRECISION
                    161: *>
                    162: *>          If RANGE='V', the lower and upper bounds of the interval to
                    163: *>          be searched for eigenvalues. VL < VU.
                    164: *>          Not referenced if RANGE = 'A' or 'I'.
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[in] IL
                    168: *> \verbatim
                    169: *>          IL is INTEGER
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[in] IU
                    173: *> \verbatim
                    174: *>          IU is INTEGER
                    175: *>
                    176: *>          If RANGE='I', the indices (in ascending order) of the
                    177: *>          smallest and largest eigenvalues to be returned.
                    178: *>          1 <= IL <= IU <= N, if N > 0.
                    179: *>          Not referenced if RANGE = 'A' or 'V'.
                    180: *> \endverbatim
                    181: *>
                    182: *> \param[out] M
                    183: *> \verbatim
                    184: *>          M is INTEGER
                    185: *>          The total number of eigenvalues found.  0 <= M <= N.
                    186: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    187: *> \endverbatim
                    188: *>
                    189: *> \param[out] W
                    190: *> \verbatim
                    191: *>          W is DOUBLE PRECISION array, dimension (N)
                    192: *>          The first M elements contain the selected eigenvalues in
                    193: *>          ascending order.
                    194: *> \endverbatim
                    195: *>
                    196: *> \param[out] Z
                    197: *> \verbatim
                    198: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M) )
                    199: *>          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
                    200: *>          contain the orthonormal eigenvectors of the matrix T
                    201: *>          corresponding to the selected eigenvalues, with the i-th
                    202: *>          column of Z holding the eigenvector associated with W(i).
                    203: *>          If JOBZ = 'N', then Z is not referenced.
                    204: *>          Note: the user must ensure that at least max(1,M) columns are
                    205: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    206: *>          is not known in advance and can be computed with a workspace
                    207: *>          query by setting NZC = -1, see below.
                    208: *> \endverbatim
                    209: *>
                    210: *> \param[in] LDZ
                    211: *> \verbatim
                    212: *>          LDZ is INTEGER
                    213: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    214: *>          JOBZ = 'V', then LDZ >= max(1,N).
                    215: *> \endverbatim
                    216: *>
                    217: *> \param[in] NZC
                    218: *> \verbatim
                    219: *>          NZC is INTEGER
                    220: *>          The number of eigenvectors to be held in the array Z.
                    221: *>          If RANGE = 'A', then NZC >= max(1,N).
                    222: *>          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
                    223: *>          If RANGE = 'I', then NZC >= IU-IL+1.
                    224: *>          If NZC = -1, then a workspace query is assumed; the
                    225: *>          routine calculates the number of columns of the array Z that
                    226: *>          are needed to hold the eigenvectors.
                    227: *>          This value is returned as the first entry of the Z array, and
                    228: *>          no error message related to NZC is issued by XERBLA.
                    229: *> \endverbatim
                    230: *>
                    231: *> \param[out] ISUPPZ
                    232: *> \verbatim
                    233: *>          ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) )
                    234: *>          The support of the eigenvectors in Z, i.e., the indices
                    235: *>          indicating the nonzero elements in Z. The i-th computed eigenvector
                    236: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
                    237: *>          ISUPPZ( 2*i ). This is relevant in the case when the matrix
                    238: *>          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
                    239: *> \endverbatim
                    240: *>
                    241: *> \param[in,out] TRYRAC
                    242: *> \verbatim
                    243: *>          TRYRAC is LOGICAL
                    244: *>          If TRYRAC.EQ..TRUE., indicates that the code should check whether
                    245: *>          the tridiagonal matrix defines its eigenvalues to high relative
                    246: *>          accuracy.  If so, the code uses relative-accuracy preserving
                    247: *>          algorithms that might be (a bit) slower depending on the matrix.
                    248: *>          If the matrix does not define its eigenvalues to high relative
                    249: *>          accuracy, the code can uses possibly faster algorithms.
                    250: *>          If TRYRAC.EQ..FALSE., the code is not required to guarantee
                    251: *>          relatively accurate eigenvalues and can use the fastest possible
                    252: *>          techniques.
                    253: *>          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
                    254: *>          does not define its eigenvalues to high relative accuracy.
                    255: *> \endverbatim
                    256: *>
                    257: *> \param[out] WORK
                    258: *> \verbatim
                    259: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
                    260: *>          On exit, if INFO = 0, WORK(1) returns the optimal
                    261: *>          (and minimal) LWORK.
                    262: *> \endverbatim
                    263: *>
                    264: *> \param[in] LWORK
                    265: *> \verbatim
                    266: *>          LWORK is INTEGER
                    267: *>          The dimension of the array WORK. LWORK >= max(1,18*N)
                    268: *>          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
                    269: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    270: *>          only calculates the optimal size of the WORK array, returns
                    271: *>          this value as the first entry of the WORK array, and no error
                    272: *>          message related to LWORK is issued by XERBLA.
                    273: *> \endverbatim
                    274: *>
                    275: *> \param[out] IWORK
                    276: *> \verbatim
                    277: *>          IWORK is INTEGER array, dimension (LIWORK)
                    278: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    279: *> \endverbatim
                    280: *>
                    281: *> \param[in] LIWORK
                    282: *> \verbatim
                    283: *>          LIWORK is INTEGER
                    284: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
                    285: *>          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
                    286: *>          if only the eigenvalues are to be computed.
                    287: *>          If LIWORK = -1, then a workspace query is assumed; the
                    288: *>          routine only calculates the optimal size of the IWORK array,
                    289: *>          returns this value as the first entry of the IWORK array, and
                    290: *>          no error message related to LIWORK is issued by XERBLA.
                    291: *> \endverbatim
                    292: *>
                    293: *> \param[out] INFO
                    294: *> \verbatim
                    295: *>          INFO is INTEGER
                    296: *>          On exit, INFO
                    297: *>          = 0:  successful exit
                    298: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    299: *>          > 0:  if INFO = 1X, internal error in DLARRE,
                    300: *>                if INFO = 2X, internal error in ZLARRV.
                    301: *>                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
                    302: *>                the nonzero error code returned by DLARRE or
                    303: *>                ZLARRV, respectively.
                    304: *> \endverbatim
                    305: *
                    306: *  Authors:
                    307: *  ========
                    308: *
                    309: *> \author Univ. of Tennessee 
                    310: *> \author Univ. of California Berkeley 
                    311: *> \author Univ. of Colorado Denver 
                    312: *> \author NAG Ltd. 
                    313: *
                    314: *> \date November 2011
                    315: *
                    316: *> \ingroup complex16OTHERcomputational
                    317: *
                    318: *> \par Contributors:
                    319: *  ==================
                    320: *>
                    321: *> Beresford Parlett, University of California, Berkeley, USA \n
                    322: *> Jim Demmel, University of California, Berkeley, USA \n
                    323: *> Inderjit Dhillon, University of Texas, Austin, USA \n
                    324: *> Osni Marques, LBNL/NERSC, USA \n
                    325: *> Christof Voemel, University of California, Berkeley, USA \n
                    326: *
                    327: *  =====================================================================
1.1       bertrand  328:       SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
                    329:      $                   M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
                    330:      $                   IWORK, LIWORK, INFO )
                    331: *
1.8       bertrand  332: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  333: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    334: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  335: *     November 2011
1.1       bertrand  336: *
                    337: *     .. Scalar Arguments ..
                    338:       CHARACTER          JOBZ, RANGE
                    339:       LOGICAL            TRYRAC
                    340:       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
                    341:       DOUBLE PRECISION VL, VU
                    342: *     ..
                    343: *     .. Array Arguments ..
                    344:       INTEGER            ISUPPZ( * ), IWORK( * )
                    345:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
                    346:       COMPLEX*16         Z( LDZ, * )
                    347: *     ..
                    348: *
                    349: *  =====================================================================
                    350: *
                    351: *     .. Parameters ..
                    352:       DOUBLE PRECISION   ZERO, ONE, FOUR, MINRGP
                    353:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
                    354:      $                     FOUR = 4.0D0,
                    355:      $                     MINRGP = 1.0D-3 )
                    356: *     ..
                    357: *     .. Local Scalars ..
                    358:       LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
                    359:       INTEGER            I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
                    360:      $                   IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
                    361:      $                   INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
                    362:      $                   ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
                    363:      $                   NZCMIN, OFFSET, WBEGIN, WEND
                    364:       DOUBLE PRECISION   BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
                    365:      $                   RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
                    366:      $                   THRESH, TMP, TNRM, WL, WU
                    367: *     ..
                    368: *     ..
                    369: *     .. External Functions ..
                    370:       LOGICAL            LSAME
                    371:       DOUBLE PRECISION   DLAMCH, DLANST
                    372:       EXTERNAL           LSAME, DLAMCH, DLANST
                    373: *     ..
                    374: *     .. External Subroutines ..
                    375:       EXTERNAL           DCOPY, DLAE2, DLAEV2, DLARRC, DLARRE, DLARRJ,
                    376:      $                   DLARRR, DLASRT, DSCAL, XERBLA, ZLARRV, ZSWAP
                    377: *     ..
                    378: *     .. Intrinsic Functions ..
                    379:       INTRINSIC          MAX, MIN, SQRT
                    380: 
                    381: 
                    382: *     ..
                    383: *     .. Executable Statements ..
                    384: *
                    385: *     Test the input parameters.
                    386: *
                    387:       WANTZ = LSAME( JOBZ, 'V' )
                    388:       ALLEIG = LSAME( RANGE, 'A' )
                    389:       VALEIG = LSAME( RANGE, 'V' )
                    390:       INDEIG = LSAME( RANGE, 'I' )
                    391: *
                    392:       LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
                    393:       ZQUERY = ( NZC.EQ.-1 )
                    394: 
                    395: *     DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
                    396: *     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
                    397: *     Furthermore, ZLARRV needs WORK of size 12*N, IWORK of size 7*N.
                    398:       IF( WANTZ ) THEN
                    399:          LWMIN = 18*N
                    400:          LIWMIN = 10*N
                    401:       ELSE
                    402: *        need less workspace if only the eigenvalues are wanted
                    403:          LWMIN = 12*N
                    404:          LIWMIN = 8*N
                    405:       ENDIF
                    406: 
                    407:       WL = ZERO
                    408:       WU = ZERO
                    409:       IIL = 0
                    410:       IIU = 0
                    411: 
                    412:       IF( VALEIG ) THEN
                    413: *        We do not reference VL, VU in the cases RANGE = 'I','A'
                    414: *        The interval (WL, WU] contains all the wanted eigenvalues.
                    415: *        It is either given by the user or computed in DLARRE.
                    416:          WL = VL
                    417:          WU = VU
                    418:       ELSEIF( INDEIG ) THEN
                    419: *        We do not reference IL, IU in the cases RANGE = 'V','A'
                    420:          IIL = IL
                    421:          IIU = IU
                    422:       ENDIF
                    423: *
                    424:       INFO = 0
                    425:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    426:          INFO = -1
                    427:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    428:          INFO = -2
                    429:       ELSE IF( N.LT.0 ) THEN
                    430:          INFO = -3
                    431:       ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
                    432:          INFO = -7
                    433:       ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
                    434:          INFO = -8
                    435:       ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
                    436:          INFO = -9
                    437:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    438:          INFO = -13
                    439:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    440:          INFO = -17
                    441:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    442:          INFO = -19
                    443:       END IF
                    444: *
                    445: *     Get machine constants.
                    446: *
                    447:       SAFMIN = DLAMCH( 'Safe minimum' )
                    448:       EPS = DLAMCH( 'Precision' )
                    449:       SMLNUM = SAFMIN / EPS
                    450:       BIGNUM = ONE / SMLNUM
                    451:       RMIN = SQRT( SMLNUM )
                    452:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    453: *
                    454:       IF( INFO.EQ.0 ) THEN
                    455:          WORK( 1 ) = LWMIN
                    456:          IWORK( 1 ) = LIWMIN
                    457: *
                    458:          IF( WANTZ .AND. ALLEIG ) THEN
                    459:             NZCMIN = N
                    460:          ELSE IF( WANTZ .AND. VALEIG ) THEN
                    461:             CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN,
                    462:      $                            NZCMIN, ITMP, ITMP2, INFO )
                    463:          ELSE IF( WANTZ .AND. INDEIG ) THEN
                    464:             NZCMIN = IIU-IIL+1
                    465:          ELSE
                    466: *           WANTZ .EQ. FALSE.
                    467:             NZCMIN = 0
                    468:          ENDIF
                    469:          IF( ZQUERY .AND. INFO.EQ.0 ) THEN
                    470:             Z( 1,1 ) = NZCMIN
                    471:          ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
                    472:             INFO = -14
                    473:          END IF
                    474:       END IF
                    475: 
                    476:       IF( INFO.NE.0 ) THEN
                    477: *
                    478:          CALL XERBLA( 'ZSTEMR', -INFO )
                    479: *
                    480:          RETURN
                    481:       ELSE IF( LQUERY .OR. ZQUERY ) THEN
                    482:          RETURN
                    483:       END IF
                    484: *
                    485: *     Handle N = 0, 1, and 2 cases immediately
                    486: *
                    487:       M = 0
                    488:       IF( N.EQ.0 )
                    489:      $   RETURN
                    490: *
                    491:       IF( N.EQ.1 ) THEN
                    492:          IF( ALLEIG .OR. INDEIG ) THEN
                    493:             M = 1
                    494:             W( 1 ) = D( 1 )
                    495:          ELSE
                    496:             IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
                    497:                M = 1
                    498:                W( 1 ) = D( 1 )
                    499:             END IF
                    500:          END IF
                    501:          IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    502:             Z( 1, 1 ) = ONE
                    503:             ISUPPZ(1) = 1
                    504:             ISUPPZ(2) = 1
                    505:          END IF
                    506:          RETURN
                    507:       END IF
                    508: *
                    509:       IF( N.EQ.2 ) THEN
                    510:          IF( .NOT.WANTZ ) THEN
                    511:             CALL DLAE2( D(1), E(1), D(2), R1, R2 )
                    512:          ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    513:             CALL DLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
                    514:          END IF
                    515:          IF( ALLEIG.OR.
                    516:      $      (VALEIG.AND.(R2.GT.WL).AND.
                    517:      $                  (R2.LE.WU)).OR.
                    518:      $      (INDEIG.AND.(IIL.EQ.1)) ) THEN
                    519:             M = M+1
                    520:             W( M ) = R2
                    521:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    522:                Z( 1, M ) = -SN
                    523:                Z( 2, M ) = CS
                    524: *              Note: At most one of SN and CS can be zero.
                    525:                IF (SN.NE.ZERO) THEN
                    526:                   IF (CS.NE.ZERO) THEN
                    527:                      ISUPPZ(2*M-1) = 1
                    528:                      ISUPPZ(2*M-1) = 2
                    529:                   ELSE
                    530:                      ISUPPZ(2*M-1) = 1
                    531:                      ISUPPZ(2*M-1) = 1
                    532:                   END IF
                    533:                ELSE
                    534:                   ISUPPZ(2*M-1) = 2
                    535:                   ISUPPZ(2*M) = 2
                    536:                END IF
                    537:             ENDIF
                    538:          ENDIF
                    539:          IF( ALLEIG.OR.
                    540:      $      (VALEIG.AND.(R1.GT.WL).AND.
                    541:      $                  (R1.LE.WU)).OR.
                    542:      $      (INDEIG.AND.(IIU.EQ.2)) ) THEN
                    543:             M = M+1
                    544:             W( M ) = R1
                    545:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    546:                Z( 1, M ) = CS
                    547:                Z( 2, M ) = SN
                    548: *              Note: At most one of SN and CS can be zero.
                    549:                IF (SN.NE.ZERO) THEN
                    550:                   IF (CS.NE.ZERO) THEN
                    551:                      ISUPPZ(2*M-1) = 1
                    552:                      ISUPPZ(2*M-1) = 2
                    553:                   ELSE
                    554:                      ISUPPZ(2*M-1) = 1
                    555:                      ISUPPZ(2*M-1) = 1
                    556:                   END IF
                    557:                ELSE
                    558:                   ISUPPZ(2*M-1) = 2
                    559:                   ISUPPZ(2*M) = 2
                    560:                END IF
                    561:             ENDIF
                    562:          ENDIF
                    563:          RETURN
                    564:       END IF
                    565: 
                    566: *     Continue with general N
                    567: 
                    568:       INDGRS = 1
                    569:       INDERR = 2*N + 1
                    570:       INDGP = 3*N + 1
                    571:       INDD = 4*N + 1
                    572:       INDE2 = 5*N + 1
                    573:       INDWRK = 6*N + 1
                    574: *
                    575:       IINSPL = 1
                    576:       IINDBL = N + 1
                    577:       IINDW = 2*N + 1
                    578:       IINDWK = 3*N + 1
                    579: *
                    580: *     Scale matrix to allowable range, if necessary.
                    581: *     The allowable range is related to the PIVMIN parameter; see the
                    582: *     comments in DLARRD.  The preference for scaling small values
                    583: *     up is heuristic; we expect users' matrices not to be close to the
                    584: *     RMAX threshold.
                    585: *
                    586:       SCALE = ONE
                    587:       TNRM = DLANST( 'M', N, D, E )
                    588:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
                    589:          SCALE = RMIN / TNRM
                    590:       ELSE IF( TNRM.GT.RMAX ) THEN
                    591:          SCALE = RMAX / TNRM
                    592:       END IF
                    593:       IF( SCALE.NE.ONE ) THEN
                    594:          CALL DSCAL( N, SCALE, D, 1 )
                    595:          CALL DSCAL( N-1, SCALE, E, 1 )
                    596:          TNRM = TNRM*SCALE
                    597:          IF( VALEIG ) THEN
                    598: *           If eigenvalues in interval have to be found,
                    599: *           scale (WL, WU] accordingly
                    600:             WL = WL*SCALE
                    601:             WU = WU*SCALE
                    602:          ENDIF
                    603:       END IF
                    604: *
                    605: *     Compute the desired eigenvalues of the tridiagonal after splitting
                    606: *     into smaller subblocks if the corresponding off-diagonal elements
                    607: *     are small
                    608: *     THRESH is the splitting parameter for DLARRE
                    609: *     A negative THRESH forces the old splitting criterion based on the
                    610: *     size of the off-diagonal. A positive THRESH switches to splitting
                    611: *     which preserves relative accuracy.
                    612: *
                    613:       IF( TRYRAC ) THEN
                    614: *        Test whether the matrix warrants the more expensive relative approach.
                    615:          CALL DLARRR( N, D, E, IINFO )
                    616:       ELSE
                    617: *        The user does not care about relative accurately eigenvalues
                    618:          IINFO = -1
                    619:       ENDIF
                    620: *     Set the splitting criterion
                    621:       IF (IINFO.EQ.0) THEN
                    622:          THRESH = EPS
                    623:       ELSE
                    624:          THRESH = -EPS
                    625: *        relative accuracy is desired but T does not guarantee it
                    626:          TRYRAC = .FALSE.
                    627:       ENDIF
                    628: *
                    629:       IF( TRYRAC ) THEN
                    630: *        Copy original diagonal, needed to guarantee relative accuracy
                    631:          CALL DCOPY(N,D,1,WORK(INDD),1)
                    632:       ENDIF
                    633: *     Store the squares of the offdiagonal values of T
                    634:       DO 5 J = 1, N-1
                    635:          WORK( INDE2+J-1 ) = E(J)**2
                    636:  5    CONTINUE
                    637: 
                    638: *     Set the tolerance parameters for bisection
                    639:       IF( .NOT.WANTZ ) THEN
                    640: *        DLARRE computes the eigenvalues to full precision.
                    641:          RTOL1 = FOUR * EPS
                    642:          RTOL2 = FOUR * EPS
                    643:       ELSE
                    644: *        DLARRE computes the eigenvalues to less than full precision.
                    645: *        ZLARRV will refine the eigenvalue approximations, and we only
                    646: *        need less accurate initial bisection in DLARRE.
                    647: *        Note: these settings do only affect the subset case and DLARRE
                    648:          RTOL1 = SQRT(EPS)
                    649:          RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )
                    650:       ENDIF
                    651:       CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
                    652:      $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
                    653:      $             IWORK( IINSPL ), M, W, WORK( INDERR ),
                    654:      $             WORK( INDGP ), IWORK( IINDBL ),
                    655:      $             IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
                    656:      $             WORK( INDWRK ), IWORK( IINDWK ), IINFO )
                    657:       IF( IINFO.NE.0 ) THEN
                    658:          INFO = 10 + ABS( IINFO )
                    659:          RETURN
                    660:       END IF
                    661: *     Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
                    662: *     part of the spectrum. All desired eigenvalues are contained in
                    663: *     (WL,WU]
                    664: 
                    665: 
                    666:       IF( WANTZ ) THEN
                    667: *
                    668: *        Compute the desired eigenvectors corresponding to the computed
                    669: *        eigenvalues
                    670: *
                    671:          CALL ZLARRV( N, WL, WU, D, E,
                    672:      $                PIVMIN, IWORK( IINSPL ), M,
                    673:      $                1, M, MINRGP, RTOL1, RTOL2,
                    674:      $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
                    675:      $                IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
                    676:      $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
                    677:          IF( IINFO.NE.0 ) THEN
                    678:             INFO = 20 + ABS( IINFO )
                    679:             RETURN
                    680:          END IF
                    681:       ELSE
                    682: *        DLARRE computes eigenvalues of the (shifted) root representation
                    683: *        ZLARRV returns the eigenvalues of the unshifted matrix.
                    684: *        However, if the eigenvectors are not desired by the user, we need
                    685: *        to apply the corresponding shifts from DLARRE to obtain the
                    686: *        eigenvalues of the original matrix.
                    687:          DO 20 J = 1, M
                    688:             ITMP = IWORK( IINDBL+J-1 )
                    689:             W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
                    690:  20      CONTINUE
                    691:       END IF
                    692: *
                    693: 
                    694:       IF ( TRYRAC ) THEN
                    695: *        Refine computed eigenvalues so that they are relatively accurate
                    696: *        with respect to the original matrix T.
                    697:          IBEGIN = 1
                    698:          WBEGIN = 1
                    699:          DO 39  JBLK = 1, IWORK( IINDBL+M-1 )
                    700:             IEND = IWORK( IINSPL+JBLK-1 )
                    701:             IN = IEND - IBEGIN + 1
                    702:             WEND = WBEGIN - 1
                    703: *           check if any eigenvalues have to be refined in this block
                    704:  36         CONTINUE
                    705:             IF( WEND.LT.M ) THEN
                    706:                IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
                    707:                   WEND = WEND + 1
                    708:                   GO TO 36
                    709:                END IF
                    710:             END IF
                    711:             IF( WEND.LT.WBEGIN ) THEN
                    712:                IBEGIN = IEND + 1
                    713:                GO TO 39
                    714:             END IF
                    715: 
                    716:             OFFSET = IWORK(IINDW+WBEGIN-1)-1
                    717:             IFIRST = IWORK(IINDW+WBEGIN-1)
                    718:             ILAST = IWORK(IINDW+WEND-1)
                    719:             RTOL2 = FOUR * EPS
                    720:             CALL DLARRJ( IN,
                    721:      $                   WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
                    722:      $                   IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
                    723:      $                   WORK( INDERR+WBEGIN-1 ),
                    724:      $                   WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
                    725:      $                   TNRM, IINFO )
                    726:             IBEGIN = IEND + 1
                    727:             WBEGIN = WEND + 1
                    728:  39      CONTINUE
                    729:       ENDIF
                    730: *
                    731: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    732: *
                    733:       IF( SCALE.NE.ONE ) THEN
                    734:          CALL DSCAL( M, ONE / SCALE, W, 1 )
                    735:       END IF
                    736: *
                    737: *     If eigenvalues are not in increasing order, then sort them,
                    738: *     possibly along with eigenvectors.
                    739: *
                    740:       IF( NSPLIT.GT.1 ) THEN
                    741:          IF( .NOT. WANTZ ) THEN
                    742:             CALL DLASRT( 'I', M, W, IINFO )
                    743:             IF( IINFO.NE.0 ) THEN
                    744:                INFO = 3
                    745:                RETURN
                    746:             END IF
                    747:          ELSE
                    748:             DO 60 J = 1, M - 1
                    749:                I = 0
                    750:                TMP = W( J )
                    751:                DO 50 JJ = J + 1, M
                    752:                   IF( W( JJ ).LT.TMP ) THEN
                    753:                      I = JJ
                    754:                      TMP = W( JJ )
                    755:                   END IF
                    756:  50            CONTINUE
                    757:                IF( I.NE.0 ) THEN
                    758:                   W( I ) = W( J )
                    759:                   W( J ) = TMP
                    760:                   IF( WANTZ ) THEN
                    761:                      CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    762:                      ITMP = ISUPPZ( 2*I-1 )
                    763:                      ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
                    764:                      ISUPPZ( 2*J-1 ) = ITMP
                    765:                      ITMP = ISUPPZ( 2*I )
                    766:                      ISUPPZ( 2*I ) = ISUPPZ( 2*J )
                    767:                      ISUPPZ( 2*J ) = ITMP
                    768:                   END IF
                    769:                END IF
                    770:  60         CONTINUE
                    771:          END IF
                    772:       ENDIF
                    773: *
                    774: *
                    775:       WORK( 1 ) = LWMIN
                    776:       IWORK( 1 ) = LIWMIN
                    777:       RETURN
                    778: *
                    779: *     End of ZSTEMR
                    780: *
                    781:       END

CVSweb interface <joel.bertrand@systella.fr>