Annotation of rpl/lapack/lapack/zstemr.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
                      2:      $                   M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
                      3:      $                   IWORK, LIWORK, INFO )
                      4:       IMPLICIT NONE
                      5: *
                      6: *  -- LAPACK computational routine (version 3.2.1)                    --
                      7: *
                      8: *  -- April 2009                                                      --
                      9: *
                     10: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                     11: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                     12: *
                     13: *     .. Scalar Arguments ..
                     14:       CHARACTER          JOBZ, RANGE
                     15:       LOGICAL            TRYRAC
                     16:       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
                     17:       DOUBLE PRECISION VL, VU
                     18: *     ..
                     19: *     .. Array Arguments ..
                     20:       INTEGER            ISUPPZ( * ), IWORK( * )
                     21:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
                     22:       COMPLEX*16         Z( LDZ, * )
                     23: *     ..
                     24: *
                     25: *  Purpose
                     26: *  =======
                     27: *
                     28: *  ZSTEMR computes selected eigenvalues and, optionally, eigenvectors
                     29: *  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
                     30: *  a well defined set of pairwise different real eigenvalues, the corresponding
                     31: *  real eigenvectors are pairwise orthogonal.
                     32: *
                     33: *  The spectrum may be computed either completely or partially by specifying
                     34: *  either an interval (VL,VU] or a range of indices IL:IU for the desired
                     35: *  eigenvalues.
                     36: *
                     37: *  Depending on the number of desired eigenvalues, these are computed either
                     38: *  by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
                     39: *  computed by the use of various suitable L D L^T factorizations near clusters
                     40: *  of close eigenvalues (referred to as RRRs, Relatively Robust
                     41: *  Representations). An informal sketch of the algorithm follows.
                     42: *
                     43: *  For each unreduced block (submatrix) of T,
                     44: *     (a) Compute T - sigma I  = L D L^T, so that L and D
                     45: *         define all the wanted eigenvalues to high relative accuracy.
                     46: *         This means that small relative changes in the entries of D and L
                     47: *         cause only small relative changes in the eigenvalues and
                     48: *         eigenvectors. The standard (unfactored) representation of the
                     49: *         tridiagonal matrix T does not have this property in general.
                     50: *     (b) Compute the eigenvalues to suitable accuracy.
                     51: *         If the eigenvectors are desired, the algorithm attains full
                     52: *         accuracy of the computed eigenvalues only right before
                     53: *         the corresponding vectors have to be computed, see steps c) and d).
                     54: *     (c) For each cluster of close eigenvalues, select a new
                     55: *         shift close to the cluster, find a new factorization, and refine
                     56: *         the shifted eigenvalues to suitable accuracy.
                     57: *     (d) For each eigenvalue with a large enough relative separation compute
                     58: *         the corresponding eigenvector by forming a rank revealing twisted
                     59: *         factorization. Go back to (c) for any clusters that remain.
                     60: *
                     61: *  For more details, see:
                     62: *  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
                     63: *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
                     64: *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
                     65: *  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
                     66: *    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
                     67: *    2004.  Also LAPACK Working Note 154.
                     68: *  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
                     69: *    tridiagonal eigenvalue/eigenvector problem",
                     70: *    Computer Science Division Technical Report No. UCB/CSD-97-971,
                     71: *    UC Berkeley, May 1997.
                     72: *
                     73: *  Further Details
                     74: *  1.ZSTEMR works only on machines which follow IEEE-754
                     75: *  floating-point standard in their handling of infinities and NaNs.
                     76: *  This permits the use of efficient inner loops avoiding a check for
                     77: *  zero divisors.
                     78: *
                     79: *  2. LAPACK routines can be used to reduce a complex Hermitean matrix to
                     80: *  real symmetric tridiagonal form.
                     81: *
                     82: *  (Any complex Hermitean tridiagonal matrix has real values on its diagonal
                     83: *  and potentially complex numbers on its off-diagonals. By applying a
                     84: *  similarity transform with an appropriate diagonal matrix
                     85: *  diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean
                     86: *  matrix can be transformed into a real symmetric matrix and complex
                     87: *  arithmetic can be entirely avoided.)
                     88: *
                     89: *  While the eigenvectors of the real symmetric tridiagonal matrix are real,
                     90: *  the eigenvectors of original complex Hermitean matrix have complex entries
                     91: *  in general.
                     92: *  Since LAPACK drivers overwrite the matrix data with the eigenvectors,
                     93: *  ZSTEMR accepts complex workspace to facilitate interoperability
                     94: *  with ZUNMTR or ZUPMTR.
                     95: *
                     96: *  Arguments
                     97: *  =========
                     98: *
                     99: *  JOBZ    (input) CHARACTER*1
                    100: *          = 'N':  Compute eigenvalues only;
                    101: *          = 'V':  Compute eigenvalues and eigenvectors.
                    102: *
                    103: *  RANGE   (input) CHARACTER*1
                    104: *          = 'A': all eigenvalues will be found.
                    105: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                    106: *                 will be found.
                    107: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                    108: *
                    109: *  N       (input) INTEGER
                    110: *          The order of the matrix.  N >= 0.
                    111: *
                    112: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
                    113: *          On entry, the N diagonal elements of the tridiagonal matrix
                    114: *          T. On exit, D is overwritten.
                    115: *
                    116: *  E       (input/output) DOUBLE PRECISION array, dimension (N)
                    117: *          On entry, the (N-1) subdiagonal elements of the tridiagonal
                    118: *          matrix T in elements 1 to N-1 of E. E(N) need not be set on
                    119: *          input, but is used internally as workspace.
                    120: *          On exit, E is overwritten.
                    121: *
                    122: *  VL      (input) DOUBLE PRECISION
                    123: *  VU      (input) DOUBLE PRECISION
                    124: *          If RANGE='V', the lower and upper bounds of the interval to
                    125: *          be searched for eigenvalues. VL < VU.
                    126: *          Not referenced if RANGE = 'A' or 'I'.
                    127: *
                    128: *  IL      (input) INTEGER
                    129: *  IU      (input) INTEGER
                    130: *          If RANGE='I', the indices (in ascending order) of the
                    131: *          smallest and largest eigenvalues to be returned.
                    132: *          1 <= IL <= IU <= N, if N > 0.
                    133: *          Not referenced if RANGE = 'A' or 'V'.
                    134: *
                    135: *  M       (output) INTEGER
                    136: *          The total number of eigenvalues found.  0 <= M <= N.
                    137: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    138: *
                    139: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    140: *          The first M elements contain the selected eigenvalues in
                    141: *          ascending order.
                    142: *
                    143: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M) )
                    144: *          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
                    145: *          contain the orthonormal eigenvectors of the matrix T
                    146: *          corresponding to the selected eigenvalues, with the i-th
                    147: *          column of Z holding the eigenvector associated with W(i).
                    148: *          If JOBZ = 'N', then Z is not referenced.
                    149: *          Note: the user must ensure that at least max(1,M) columns are
                    150: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    151: *          is not known in advance and can be computed with a workspace
                    152: *          query by setting NZC = -1, see below.
                    153: *
                    154: *  LDZ     (input) INTEGER
                    155: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    156: *          JOBZ = 'V', then LDZ >= max(1,N).
                    157: *
                    158: *  NZC     (input) INTEGER
                    159: *          The number of eigenvectors to be held in the array Z.
                    160: *          If RANGE = 'A', then NZC >= max(1,N).
                    161: *          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
                    162: *          If RANGE = 'I', then NZC >= IU-IL+1.
                    163: *          If NZC = -1, then a workspace query is assumed; the
                    164: *          routine calculates the number of columns of the array Z that
                    165: *          are needed to hold the eigenvectors.
                    166: *          This value is returned as the first entry of the Z array, and
                    167: *          no error message related to NZC is issued by XERBLA.
                    168: *
                    169: *  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
                    170: *          The support of the eigenvectors in Z, i.e., the indices
                    171: *          indicating the nonzero elements in Z. The i-th computed eigenvector
                    172: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
                    173: *          ISUPPZ( 2*i ). This is relevant in the case when the matrix
                    174: *          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
                    175: *
                    176: *  TRYRAC  (input/output) LOGICAL
                    177: *          If TRYRAC.EQ..TRUE., indicates that the code should check whether
                    178: *          the tridiagonal matrix defines its eigenvalues to high relative
                    179: *          accuracy.  If so, the code uses relative-accuracy preserving
                    180: *          algorithms that might be (a bit) slower depending on the matrix.
                    181: *          If the matrix does not define its eigenvalues to high relative
                    182: *          accuracy, the code can uses possibly faster algorithms.
                    183: *          If TRYRAC.EQ..FALSE., the code is not required to guarantee
                    184: *          relatively accurate eigenvalues and can use the fastest possible
                    185: *          techniques.
                    186: *          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
                    187: *          does not define its eigenvalues to high relative accuracy.
                    188: *
                    189: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
                    190: *          On exit, if INFO = 0, WORK(1) returns the optimal
                    191: *          (and minimal) LWORK.
                    192: *
                    193: *  LWORK   (input) INTEGER
                    194: *          The dimension of the array WORK. LWORK >= max(1,18*N)
                    195: *          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
                    196: *          If LWORK = -1, then a workspace query is assumed; the routine
                    197: *          only calculates the optimal size of the WORK array, returns
                    198: *          this value as the first entry of the WORK array, and no error
                    199: *          message related to LWORK is issued by XERBLA.
                    200: *
                    201: *  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
                    202: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    203: *
                    204: *  LIWORK  (input) INTEGER
                    205: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
                    206: *          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
                    207: *          if only the eigenvalues are to be computed.
                    208: *          If LIWORK = -1, then a workspace query is assumed; the
                    209: *          routine only calculates the optimal size of the IWORK array,
                    210: *          returns this value as the first entry of the IWORK array, and
                    211: *          no error message related to LIWORK is issued by XERBLA.
                    212: *
                    213: *  INFO    (output) INTEGER
                    214: *          On exit, INFO
                    215: *          = 0:  successful exit
                    216: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    217: *          > 0:  if INFO = 1X, internal error in DLARRE,
                    218: *                if INFO = 2X, internal error in ZLARRV.
                    219: *                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
                    220: *                the nonzero error code returned by DLARRE or
                    221: *                ZLARRV, respectively.
                    222: *
                    223: *
                    224: *  Further Details
                    225: *  ===============
                    226: *
                    227: *  Based on contributions by
                    228: *     Beresford Parlett, University of California, Berkeley, USA
                    229: *     Jim Demmel, University of California, Berkeley, USA
                    230: *     Inderjit Dhillon, University of Texas, Austin, USA
                    231: *     Osni Marques, LBNL/NERSC, USA
                    232: *     Christof Voemel, University of California, Berkeley, USA
                    233: *
                    234: *  =====================================================================
                    235: *
                    236: *     .. Parameters ..
                    237:       DOUBLE PRECISION   ZERO, ONE, FOUR, MINRGP
                    238:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
                    239:      $                     FOUR = 4.0D0,
                    240:      $                     MINRGP = 1.0D-3 )
                    241: *     ..
                    242: *     .. Local Scalars ..
                    243:       LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
                    244:       INTEGER            I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
                    245:      $                   IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
                    246:      $                   INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
                    247:      $                   ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
                    248:      $                   NZCMIN, OFFSET, WBEGIN, WEND
                    249:       DOUBLE PRECISION   BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
                    250:      $                   RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
                    251:      $                   THRESH, TMP, TNRM, WL, WU
                    252: *     ..
                    253: *     ..
                    254: *     .. External Functions ..
                    255:       LOGICAL            LSAME
                    256:       DOUBLE PRECISION   DLAMCH, DLANST
                    257:       EXTERNAL           LSAME, DLAMCH, DLANST
                    258: *     ..
                    259: *     .. External Subroutines ..
                    260:       EXTERNAL           DCOPY, DLAE2, DLAEV2, DLARRC, DLARRE, DLARRJ,
                    261:      $                   DLARRR, DLASRT, DSCAL, XERBLA, ZLARRV, ZSWAP
                    262: *     ..
                    263: *     .. Intrinsic Functions ..
                    264:       INTRINSIC          MAX, MIN, SQRT
                    265: 
                    266: 
                    267: *     ..
                    268: *     .. Executable Statements ..
                    269: *
                    270: *     Test the input parameters.
                    271: *
                    272:       WANTZ = LSAME( JOBZ, 'V' )
                    273:       ALLEIG = LSAME( RANGE, 'A' )
                    274:       VALEIG = LSAME( RANGE, 'V' )
                    275:       INDEIG = LSAME( RANGE, 'I' )
                    276: *
                    277:       LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
                    278:       ZQUERY = ( NZC.EQ.-1 )
                    279: 
                    280: *     DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
                    281: *     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
                    282: *     Furthermore, ZLARRV needs WORK of size 12*N, IWORK of size 7*N.
                    283:       IF( WANTZ ) THEN
                    284:          LWMIN = 18*N
                    285:          LIWMIN = 10*N
                    286:       ELSE
                    287: *        need less workspace if only the eigenvalues are wanted
                    288:          LWMIN = 12*N
                    289:          LIWMIN = 8*N
                    290:       ENDIF
                    291: 
                    292:       WL = ZERO
                    293:       WU = ZERO
                    294:       IIL = 0
                    295:       IIU = 0
                    296: 
                    297:       IF( VALEIG ) THEN
                    298: *        We do not reference VL, VU in the cases RANGE = 'I','A'
                    299: *        The interval (WL, WU] contains all the wanted eigenvalues.
                    300: *        It is either given by the user or computed in DLARRE.
                    301:          WL = VL
                    302:          WU = VU
                    303:       ELSEIF( INDEIG ) THEN
                    304: *        We do not reference IL, IU in the cases RANGE = 'V','A'
                    305:          IIL = IL
                    306:          IIU = IU
                    307:       ENDIF
                    308: *
                    309:       INFO = 0
                    310:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    311:          INFO = -1
                    312:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    313:          INFO = -2
                    314:       ELSE IF( N.LT.0 ) THEN
                    315:          INFO = -3
                    316:       ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
                    317:          INFO = -7
                    318:       ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
                    319:          INFO = -8
                    320:       ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
                    321:          INFO = -9
                    322:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    323:          INFO = -13
                    324:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    325:          INFO = -17
                    326:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    327:          INFO = -19
                    328:       END IF
                    329: *
                    330: *     Get machine constants.
                    331: *
                    332:       SAFMIN = DLAMCH( 'Safe minimum' )
                    333:       EPS = DLAMCH( 'Precision' )
                    334:       SMLNUM = SAFMIN / EPS
                    335:       BIGNUM = ONE / SMLNUM
                    336:       RMIN = SQRT( SMLNUM )
                    337:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    338: *
                    339:       IF( INFO.EQ.0 ) THEN
                    340:          WORK( 1 ) = LWMIN
                    341:          IWORK( 1 ) = LIWMIN
                    342: *
                    343:          IF( WANTZ .AND. ALLEIG ) THEN
                    344:             NZCMIN = N
                    345:          ELSE IF( WANTZ .AND. VALEIG ) THEN
                    346:             CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN,
                    347:      $                            NZCMIN, ITMP, ITMP2, INFO )
                    348:          ELSE IF( WANTZ .AND. INDEIG ) THEN
                    349:             NZCMIN = IIU-IIL+1
                    350:          ELSE
                    351: *           WANTZ .EQ. FALSE.
                    352:             NZCMIN = 0
                    353:          ENDIF
                    354:          IF( ZQUERY .AND. INFO.EQ.0 ) THEN
                    355:             Z( 1,1 ) = NZCMIN
                    356:          ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
                    357:             INFO = -14
                    358:          END IF
                    359:       END IF
                    360: 
                    361:       IF( INFO.NE.0 ) THEN
                    362: *
                    363:          CALL XERBLA( 'ZSTEMR', -INFO )
                    364: *
                    365:          RETURN
                    366:       ELSE IF( LQUERY .OR. ZQUERY ) THEN
                    367:          RETURN
                    368:       END IF
                    369: *
                    370: *     Handle N = 0, 1, and 2 cases immediately
                    371: *
                    372:       M = 0
                    373:       IF( N.EQ.0 )
                    374:      $   RETURN
                    375: *
                    376:       IF( N.EQ.1 ) THEN
                    377:          IF( ALLEIG .OR. INDEIG ) THEN
                    378:             M = 1
                    379:             W( 1 ) = D( 1 )
                    380:          ELSE
                    381:             IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
                    382:                M = 1
                    383:                W( 1 ) = D( 1 )
                    384:             END IF
                    385:          END IF
                    386:          IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    387:             Z( 1, 1 ) = ONE
                    388:             ISUPPZ(1) = 1
                    389:             ISUPPZ(2) = 1
                    390:          END IF
                    391:          RETURN
                    392:       END IF
                    393: *
                    394:       IF( N.EQ.2 ) THEN
                    395:          IF( .NOT.WANTZ ) THEN
                    396:             CALL DLAE2( D(1), E(1), D(2), R1, R2 )
                    397:          ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    398:             CALL DLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
                    399:          END IF
                    400:          IF( ALLEIG.OR.
                    401:      $      (VALEIG.AND.(R2.GT.WL).AND.
                    402:      $                  (R2.LE.WU)).OR.
                    403:      $      (INDEIG.AND.(IIL.EQ.1)) ) THEN
                    404:             M = M+1
                    405:             W( M ) = R2
                    406:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    407:                Z( 1, M ) = -SN
                    408:                Z( 2, M ) = CS
                    409: *              Note: At most one of SN and CS can be zero.
                    410:                IF (SN.NE.ZERO) THEN
                    411:                   IF (CS.NE.ZERO) THEN
                    412:                      ISUPPZ(2*M-1) = 1
                    413:                      ISUPPZ(2*M-1) = 2
                    414:                   ELSE
                    415:                      ISUPPZ(2*M-1) = 1
                    416:                      ISUPPZ(2*M-1) = 1
                    417:                   END IF
                    418:                ELSE
                    419:                   ISUPPZ(2*M-1) = 2
                    420:                   ISUPPZ(2*M) = 2
                    421:                END IF
                    422:             ENDIF
                    423:          ENDIF
                    424:          IF( ALLEIG.OR.
                    425:      $      (VALEIG.AND.(R1.GT.WL).AND.
                    426:      $                  (R1.LE.WU)).OR.
                    427:      $      (INDEIG.AND.(IIU.EQ.2)) ) THEN
                    428:             M = M+1
                    429:             W( M ) = R1
                    430:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    431:                Z( 1, M ) = CS
                    432:                Z( 2, M ) = SN
                    433: *              Note: At most one of SN and CS can be zero.
                    434:                IF (SN.NE.ZERO) THEN
                    435:                   IF (CS.NE.ZERO) THEN
                    436:                      ISUPPZ(2*M-1) = 1
                    437:                      ISUPPZ(2*M-1) = 2
                    438:                   ELSE
                    439:                      ISUPPZ(2*M-1) = 1
                    440:                      ISUPPZ(2*M-1) = 1
                    441:                   END IF
                    442:                ELSE
                    443:                   ISUPPZ(2*M-1) = 2
                    444:                   ISUPPZ(2*M) = 2
                    445:                END IF
                    446:             ENDIF
                    447:          ENDIF
                    448:          RETURN
                    449:       END IF
                    450: 
                    451: *     Continue with general N
                    452: 
                    453:       INDGRS = 1
                    454:       INDERR = 2*N + 1
                    455:       INDGP = 3*N + 1
                    456:       INDD = 4*N + 1
                    457:       INDE2 = 5*N + 1
                    458:       INDWRK = 6*N + 1
                    459: *
                    460:       IINSPL = 1
                    461:       IINDBL = N + 1
                    462:       IINDW = 2*N + 1
                    463:       IINDWK = 3*N + 1
                    464: *
                    465: *     Scale matrix to allowable range, if necessary.
                    466: *     The allowable range is related to the PIVMIN parameter; see the
                    467: *     comments in DLARRD.  The preference for scaling small values
                    468: *     up is heuristic; we expect users' matrices not to be close to the
                    469: *     RMAX threshold.
                    470: *
                    471:       SCALE = ONE
                    472:       TNRM = DLANST( 'M', N, D, E )
                    473:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
                    474:          SCALE = RMIN / TNRM
                    475:       ELSE IF( TNRM.GT.RMAX ) THEN
                    476:          SCALE = RMAX / TNRM
                    477:       END IF
                    478:       IF( SCALE.NE.ONE ) THEN
                    479:          CALL DSCAL( N, SCALE, D, 1 )
                    480:          CALL DSCAL( N-1, SCALE, E, 1 )
                    481:          TNRM = TNRM*SCALE
                    482:          IF( VALEIG ) THEN
                    483: *           If eigenvalues in interval have to be found,
                    484: *           scale (WL, WU] accordingly
                    485:             WL = WL*SCALE
                    486:             WU = WU*SCALE
                    487:          ENDIF
                    488:       END IF
                    489: *
                    490: *     Compute the desired eigenvalues of the tridiagonal after splitting
                    491: *     into smaller subblocks if the corresponding off-diagonal elements
                    492: *     are small
                    493: *     THRESH is the splitting parameter for DLARRE
                    494: *     A negative THRESH forces the old splitting criterion based on the
                    495: *     size of the off-diagonal. A positive THRESH switches to splitting
                    496: *     which preserves relative accuracy.
                    497: *
                    498:       IF( TRYRAC ) THEN
                    499: *        Test whether the matrix warrants the more expensive relative approach.
                    500:          CALL DLARRR( N, D, E, IINFO )
                    501:       ELSE
                    502: *        The user does not care about relative accurately eigenvalues
                    503:          IINFO = -1
                    504:       ENDIF
                    505: *     Set the splitting criterion
                    506:       IF (IINFO.EQ.0) THEN
                    507:          THRESH = EPS
                    508:       ELSE
                    509:          THRESH = -EPS
                    510: *        relative accuracy is desired but T does not guarantee it
                    511:          TRYRAC = .FALSE.
                    512:       ENDIF
                    513: *
                    514:       IF( TRYRAC ) THEN
                    515: *        Copy original diagonal, needed to guarantee relative accuracy
                    516:          CALL DCOPY(N,D,1,WORK(INDD),1)
                    517:       ENDIF
                    518: *     Store the squares of the offdiagonal values of T
                    519:       DO 5 J = 1, N-1
                    520:          WORK( INDE2+J-1 ) = E(J)**2
                    521:  5    CONTINUE
                    522: 
                    523: *     Set the tolerance parameters for bisection
                    524:       IF( .NOT.WANTZ ) THEN
                    525: *        DLARRE computes the eigenvalues to full precision.
                    526:          RTOL1 = FOUR * EPS
                    527:          RTOL2 = FOUR * EPS
                    528:       ELSE
                    529: *        DLARRE computes the eigenvalues to less than full precision.
                    530: *        ZLARRV will refine the eigenvalue approximations, and we only
                    531: *        need less accurate initial bisection in DLARRE.
                    532: *        Note: these settings do only affect the subset case and DLARRE
                    533:          RTOL1 = SQRT(EPS)
                    534:          RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )
                    535:       ENDIF
                    536:       CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
                    537:      $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
                    538:      $             IWORK( IINSPL ), M, W, WORK( INDERR ),
                    539:      $             WORK( INDGP ), IWORK( IINDBL ),
                    540:      $             IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
                    541:      $             WORK( INDWRK ), IWORK( IINDWK ), IINFO )
                    542:       IF( IINFO.NE.0 ) THEN
                    543:          INFO = 10 + ABS( IINFO )
                    544:          RETURN
                    545:       END IF
                    546: *     Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
                    547: *     part of the spectrum. All desired eigenvalues are contained in
                    548: *     (WL,WU]
                    549: 
                    550: 
                    551:       IF( WANTZ ) THEN
                    552: *
                    553: *        Compute the desired eigenvectors corresponding to the computed
                    554: *        eigenvalues
                    555: *
                    556:          CALL ZLARRV( N, WL, WU, D, E,
                    557:      $                PIVMIN, IWORK( IINSPL ), M,
                    558:      $                1, M, MINRGP, RTOL1, RTOL2,
                    559:      $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
                    560:      $                IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
                    561:      $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
                    562:          IF( IINFO.NE.0 ) THEN
                    563:             INFO = 20 + ABS( IINFO )
                    564:             RETURN
                    565:          END IF
                    566:       ELSE
                    567: *        DLARRE computes eigenvalues of the (shifted) root representation
                    568: *        ZLARRV returns the eigenvalues of the unshifted matrix.
                    569: *        However, if the eigenvectors are not desired by the user, we need
                    570: *        to apply the corresponding shifts from DLARRE to obtain the
                    571: *        eigenvalues of the original matrix.
                    572:          DO 20 J = 1, M
                    573:             ITMP = IWORK( IINDBL+J-1 )
                    574:             W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
                    575:  20      CONTINUE
                    576:       END IF
                    577: *
                    578: 
                    579:       IF ( TRYRAC ) THEN
                    580: *        Refine computed eigenvalues so that they are relatively accurate
                    581: *        with respect to the original matrix T.
                    582:          IBEGIN = 1
                    583:          WBEGIN = 1
                    584:          DO 39  JBLK = 1, IWORK( IINDBL+M-1 )
                    585:             IEND = IWORK( IINSPL+JBLK-1 )
                    586:             IN = IEND - IBEGIN + 1
                    587:             WEND = WBEGIN - 1
                    588: *           check if any eigenvalues have to be refined in this block
                    589:  36         CONTINUE
                    590:             IF( WEND.LT.M ) THEN
                    591:                IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
                    592:                   WEND = WEND + 1
                    593:                   GO TO 36
                    594:                END IF
                    595:             END IF
                    596:             IF( WEND.LT.WBEGIN ) THEN
                    597:                IBEGIN = IEND + 1
                    598:                GO TO 39
                    599:             END IF
                    600: 
                    601:             OFFSET = IWORK(IINDW+WBEGIN-1)-1
                    602:             IFIRST = IWORK(IINDW+WBEGIN-1)
                    603:             ILAST = IWORK(IINDW+WEND-1)
                    604:             RTOL2 = FOUR * EPS
                    605:             CALL DLARRJ( IN,
                    606:      $                   WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
                    607:      $                   IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
                    608:      $                   WORK( INDERR+WBEGIN-1 ),
                    609:      $                   WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
                    610:      $                   TNRM, IINFO )
                    611:             IBEGIN = IEND + 1
                    612:             WBEGIN = WEND + 1
                    613:  39      CONTINUE
                    614:       ENDIF
                    615: *
                    616: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    617: *
                    618:       IF( SCALE.NE.ONE ) THEN
                    619:          CALL DSCAL( M, ONE / SCALE, W, 1 )
                    620:       END IF
                    621: *
                    622: *     If eigenvalues are not in increasing order, then sort them,
                    623: *     possibly along with eigenvectors.
                    624: *
                    625:       IF( NSPLIT.GT.1 ) THEN
                    626:          IF( .NOT. WANTZ ) THEN
                    627:             CALL DLASRT( 'I', M, W, IINFO )
                    628:             IF( IINFO.NE.0 ) THEN
                    629:                INFO = 3
                    630:                RETURN
                    631:             END IF
                    632:          ELSE
                    633:             DO 60 J = 1, M - 1
                    634:                I = 0
                    635:                TMP = W( J )
                    636:                DO 50 JJ = J + 1, M
                    637:                   IF( W( JJ ).LT.TMP ) THEN
                    638:                      I = JJ
                    639:                      TMP = W( JJ )
                    640:                   END IF
                    641:  50            CONTINUE
                    642:                IF( I.NE.0 ) THEN
                    643:                   W( I ) = W( J )
                    644:                   W( J ) = TMP
                    645:                   IF( WANTZ ) THEN
                    646:                      CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    647:                      ITMP = ISUPPZ( 2*I-1 )
                    648:                      ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
                    649:                      ISUPPZ( 2*J-1 ) = ITMP
                    650:                      ITMP = ISUPPZ( 2*I )
                    651:                      ISUPPZ( 2*I ) = ISUPPZ( 2*J )
                    652:                      ISUPPZ( 2*J ) = ITMP
                    653:                   END IF
                    654:                END IF
                    655:  60         CONTINUE
                    656:          END IF
                    657:       ENDIF
                    658: *
                    659: *
                    660:       WORK( 1 ) = LWMIN
                    661:       IWORK( 1 ) = LIWMIN
                    662:       RETURN
                    663: *
                    664: *     End of ZSTEMR
                    665: *
                    666:       END

CVSweb interface <joel.bertrand@systella.fr>