Annotation of rpl/lapack/lapack/zstemr.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
        !             2:      $                   M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
        !             3:      $                   IWORK, LIWORK, INFO )
        !             4:       IMPLICIT NONE
        !             5: *
        !             6: *  -- LAPACK computational routine (version 3.2.1)                    --
        !             7: *
        !             8: *  -- April 2009                                                      --
        !             9: *
        !            10: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !            11: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !            12: *
        !            13: *     .. Scalar Arguments ..
        !            14:       CHARACTER          JOBZ, RANGE
        !            15:       LOGICAL            TRYRAC
        !            16:       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
        !            17:       DOUBLE PRECISION VL, VU
        !            18: *     ..
        !            19: *     .. Array Arguments ..
        !            20:       INTEGER            ISUPPZ( * ), IWORK( * )
        !            21:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
        !            22:       COMPLEX*16         Z( LDZ, * )
        !            23: *     ..
        !            24: *
        !            25: *  Purpose
        !            26: *  =======
        !            27: *
        !            28: *  ZSTEMR computes selected eigenvalues and, optionally, eigenvectors
        !            29: *  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
        !            30: *  a well defined set of pairwise different real eigenvalues, the corresponding
        !            31: *  real eigenvectors are pairwise orthogonal.
        !            32: *
        !            33: *  The spectrum may be computed either completely or partially by specifying
        !            34: *  either an interval (VL,VU] or a range of indices IL:IU for the desired
        !            35: *  eigenvalues.
        !            36: *
        !            37: *  Depending on the number of desired eigenvalues, these are computed either
        !            38: *  by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
        !            39: *  computed by the use of various suitable L D L^T factorizations near clusters
        !            40: *  of close eigenvalues (referred to as RRRs, Relatively Robust
        !            41: *  Representations). An informal sketch of the algorithm follows.
        !            42: *
        !            43: *  For each unreduced block (submatrix) of T,
        !            44: *     (a) Compute T - sigma I  = L D L^T, so that L and D
        !            45: *         define all the wanted eigenvalues to high relative accuracy.
        !            46: *         This means that small relative changes in the entries of D and L
        !            47: *         cause only small relative changes in the eigenvalues and
        !            48: *         eigenvectors. The standard (unfactored) representation of the
        !            49: *         tridiagonal matrix T does not have this property in general.
        !            50: *     (b) Compute the eigenvalues to suitable accuracy.
        !            51: *         If the eigenvectors are desired, the algorithm attains full
        !            52: *         accuracy of the computed eigenvalues only right before
        !            53: *         the corresponding vectors have to be computed, see steps c) and d).
        !            54: *     (c) For each cluster of close eigenvalues, select a new
        !            55: *         shift close to the cluster, find a new factorization, and refine
        !            56: *         the shifted eigenvalues to suitable accuracy.
        !            57: *     (d) For each eigenvalue with a large enough relative separation compute
        !            58: *         the corresponding eigenvector by forming a rank revealing twisted
        !            59: *         factorization. Go back to (c) for any clusters that remain.
        !            60: *
        !            61: *  For more details, see:
        !            62: *  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
        !            63: *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
        !            64: *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
        !            65: *  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
        !            66: *    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
        !            67: *    2004.  Also LAPACK Working Note 154.
        !            68: *  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
        !            69: *    tridiagonal eigenvalue/eigenvector problem",
        !            70: *    Computer Science Division Technical Report No. UCB/CSD-97-971,
        !            71: *    UC Berkeley, May 1997.
        !            72: *
        !            73: *  Further Details
        !            74: *  1.ZSTEMR works only on machines which follow IEEE-754
        !            75: *  floating-point standard in their handling of infinities and NaNs.
        !            76: *  This permits the use of efficient inner loops avoiding a check for
        !            77: *  zero divisors.
        !            78: *
        !            79: *  2. LAPACK routines can be used to reduce a complex Hermitean matrix to
        !            80: *  real symmetric tridiagonal form.
        !            81: *
        !            82: *  (Any complex Hermitean tridiagonal matrix has real values on its diagonal
        !            83: *  and potentially complex numbers on its off-diagonals. By applying a
        !            84: *  similarity transform with an appropriate diagonal matrix
        !            85: *  diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean
        !            86: *  matrix can be transformed into a real symmetric matrix and complex
        !            87: *  arithmetic can be entirely avoided.)
        !            88: *
        !            89: *  While the eigenvectors of the real symmetric tridiagonal matrix are real,
        !            90: *  the eigenvectors of original complex Hermitean matrix have complex entries
        !            91: *  in general.
        !            92: *  Since LAPACK drivers overwrite the matrix data with the eigenvectors,
        !            93: *  ZSTEMR accepts complex workspace to facilitate interoperability
        !            94: *  with ZUNMTR or ZUPMTR.
        !            95: *
        !            96: *  Arguments
        !            97: *  =========
        !            98: *
        !            99: *  JOBZ    (input) CHARACTER*1
        !           100: *          = 'N':  Compute eigenvalues only;
        !           101: *          = 'V':  Compute eigenvalues and eigenvectors.
        !           102: *
        !           103: *  RANGE   (input) CHARACTER*1
        !           104: *          = 'A': all eigenvalues will be found.
        !           105: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !           106: *                 will be found.
        !           107: *          = 'I': the IL-th through IU-th eigenvalues will be found.
        !           108: *
        !           109: *  N       (input) INTEGER
        !           110: *          The order of the matrix.  N >= 0.
        !           111: *
        !           112: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
        !           113: *          On entry, the N diagonal elements of the tridiagonal matrix
        !           114: *          T. On exit, D is overwritten.
        !           115: *
        !           116: *  E       (input/output) DOUBLE PRECISION array, dimension (N)
        !           117: *          On entry, the (N-1) subdiagonal elements of the tridiagonal
        !           118: *          matrix T in elements 1 to N-1 of E. E(N) need not be set on
        !           119: *          input, but is used internally as workspace.
        !           120: *          On exit, E is overwritten.
        !           121: *
        !           122: *  VL      (input) DOUBLE PRECISION
        !           123: *  VU      (input) DOUBLE PRECISION
        !           124: *          If RANGE='V', the lower and upper bounds of the interval to
        !           125: *          be searched for eigenvalues. VL < VU.
        !           126: *          Not referenced if RANGE = 'A' or 'I'.
        !           127: *
        !           128: *  IL      (input) INTEGER
        !           129: *  IU      (input) INTEGER
        !           130: *          If RANGE='I', the indices (in ascending order) of the
        !           131: *          smallest and largest eigenvalues to be returned.
        !           132: *          1 <= IL <= IU <= N, if N > 0.
        !           133: *          Not referenced if RANGE = 'A' or 'V'.
        !           134: *
        !           135: *  M       (output) INTEGER
        !           136: *          The total number of eigenvalues found.  0 <= M <= N.
        !           137: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           138: *
        !           139: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !           140: *          The first M elements contain the selected eigenvalues in
        !           141: *          ascending order.
        !           142: *
        !           143: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M) )
        !           144: *          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
        !           145: *          contain the orthonormal eigenvectors of the matrix T
        !           146: *          corresponding to the selected eigenvalues, with the i-th
        !           147: *          column of Z holding the eigenvector associated with W(i).
        !           148: *          If JOBZ = 'N', then Z is not referenced.
        !           149: *          Note: the user must ensure that at least max(1,M) columns are
        !           150: *          supplied in the array Z; if RANGE = 'V', the exact value of M
        !           151: *          is not known in advance and can be computed with a workspace
        !           152: *          query by setting NZC = -1, see below.
        !           153: *
        !           154: *  LDZ     (input) INTEGER
        !           155: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !           156: *          JOBZ = 'V', then LDZ >= max(1,N).
        !           157: *
        !           158: *  NZC     (input) INTEGER
        !           159: *          The number of eigenvectors to be held in the array Z.
        !           160: *          If RANGE = 'A', then NZC >= max(1,N).
        !           161: *          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
        !           162: *          If RANGE = 'I', then NZC >= IU-IL+1.
        !           163: *          If NZC = -1, then a workspace query is assumed; the
        !           164: *          routine calculates the number of columns of the array Z that
        !           165: *          are needed to hold the eigenvectors.
        !           166: *          This value is returned as the first entry of the Z array, and
        !           167: *          no error message related to NZC is issued by XERBLA.
        !           168: *
        !           169: *  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
        !           170: *          The support of the eigenvectors in Z, i.e., the indices
        !           171: *          indicating the nonzero elements in Z. The i-th computed eigenvector
        !           172: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
        !           173: *          ISUPPZ( 2*i ). This is relevant in the case when the matrix
        !           174: *          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
        !           175: *
        !           176: *  TRYRAC  (input/output) LOGICAL
        !           177: *          If TRYRAC.EQ..TRUE., indicates that the code should check whether
        !           178: *          the tridiagonal matrix defines its eigenvalues to high relative
        !           179: *          accuracy.  If so, the code uses relative-accuracy preserving
        !           180: *          algorithms that might be (a bit) slower depending on the matrix.
        !           181: *          If the matrix does not define its eigenvalues to high relative
        !           182: *          accuracy, the code can uses possibly faster algorithms.
        !           183: *          If TRYRAC.EQ..FALSE., the code is not required to guarantee
        !           184: *          relatively accurate eigenvalues and can use the fastest possible
        !           185: *          techniques.
        !           186: *          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
        !           187: *          does not define its eigenvalues to high relative accuracy.
        !           188: *
        !           189: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
        !           190: *          On exit, if INFO = 0, WORK(1) returns the optimal
        !           191: *          (and minimal) LWORK.
        !           192: *
        !           193: *  LWORK   (input) INTEGER
        !           194: *          The dimension of the array WORK. LWORK >= max(1,18*N)
        !           195: *          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
        !           196: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           197: *          only calculates the optimal size of the WORK array, returns
        !           198: *          this value as the first entry of the WORK array, and no error
        !           199: *          message related to LWORK is issued by XERBLA.
        !           200: *
        !           201: *  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
        !           202: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           203: *
        !           204: *  LIWORK  (input) INTEGER
        !           205: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
        !           206: *          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
        !           207: *          if only the eigenvalues are to be computed.
        !           208: *          If LIWORK = -1, then a workspace query is assumed; the
        !           209: *          routine only calculates the optimal size of the IWORK array,
        !           210: *          returns this value as the first entry of the IWORK array, and
        !           211: *          no error message related to LIWORK is issued by XERBLA.
        !           212: *
        !           213: *  INFO    (output) INTEGER
        !           214: *          On exit, INFO
        !           215: *          = 0:  successful exit
        !           216: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           217: *          > 0:  if INFO = 1X, internal error in DLARRE,
        !           218: *                if INFO = 2X, internal error in ZLARRV.
        !           219: *                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
        !           220: *                the nonzero error code returned by DLARRE or
        !           221: *                ZLARRV, respectively.
        !           222: *
        !           223: *
        !           224: *  Further Details
        !           225: *  ===============
        !           226: *
        !           227: *  Based on contributions by
        !           228: *     Beresford Parlett, University of California, Berkeley, USA
        !           229: *     Jim Demmel, University of California, Berkeley, USA
        !           230: *     Inderjit Dhillon, University of Texas, Austin, USA
        !           231: *     Osni Marques, LBNL/NERSC, USA
        !           232: *     Christof Voemel, University of California, Berkeley, USA
        !           233: *
        !           234: *  =====================================================================
        !           235: *
        !           236: *     .. Parameters ..
        !           237:       DOUBLE PRECISION   ZERO, ONE, FOUR, MINRGP
        !           238:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
        !           239:      $                     FOUR = 4.0D0,
        !           240:      $                     MINRGP = 1.0D-3 )
        !           241: *     ..
        !           242: *     .. Local Scalars ..
        !           243:       LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
        !           244:       INTEGER            I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
        !           245:      $                   IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
        !           246:      $                   INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
        !           247:      $                   ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
        !           248:      $                   NZCMIN, OFFSET, WBEGIN, WEND
        !           249:       DOUBLE PRECISION   BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
        !           250:      $                   RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
        !           251:      $                   THRESH, TMP, TNRM, WL, WU
        !           252: *     ..
        !           253: *     ..
        !           254: *     .. External Functions ..
        !           255:       LOGICAL            LSAME
        !           256:       DOUBLE PRECISION   DLAMCH, DLANST
        !           257:       EXTERNAL           LSAME, DLAMCH, DLANST
        !           258: *     ..
        !           259: *     .. External Subroutines ..
        !           260:       EXTERNAL           DCOPY, DLAE2, DLAEV2, DLARRC, DLARRE, DLARRJ,
        !           261:      $                   DLARRR, DLASRT, DSCAL, XERBLA, ZLARRV, ZSWAP
        !           262: *     ..
        !           263: *     .. Intrinsic Functions ..
        !           264:       INTRINSIC          MAX, MIN, SQRT
        !           265: 
        !           266: 
        !           267: *     ..
        !           268: *     .. Executable Statements ..
        !           269: *
        !           270: *     Test the input parameters.
        !           271: *
        !           272:       WANTZ = LSAME( JOBZ, 'V' )
        !           273:       ALLEIG = LSAME( RANGE, 'A' )
        !           274:       VALEIG = LSAME( RANGE, 'V' )
        !           275:       INDEIG = LSAME( RANGE, 'I' )
        !           276: *
        !           277:       LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
        !           278:       ZQUERY = ( NZC.EQ.-1 )
        !           279: 
        !           280: *     DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
        !           281: *     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
        !           282: *     Furthermore, ZLARRV needs WORK of size 12*N, IWORK of size 7*N.
        !           283:       IF( WANTZ ) THEN
        !           284:          LWMIN = 18*N
        !           285:          LIWMIN = 10*N
        !           286:       ELSE
        !           287: *        need less workspace if only the eigenvalues are wanted
        !           288:          LWMIN = 12*N
        !           289:          LIWMIN = 8*N
        !           290:       ENDIF
        !           291: 
        !           292:       WL = ZERO
        !           293:       WU = ZERO
        !           294:       IIL = 0
        !           295:       IIU = 0
        !           296: 
        !           297:       IF( VALEIG ) THEN
        !           298: *        We do not reference VL, VU in the cases RANGE = 'I','A'
        !           299: *        The interval (WL, WU] contains all the wanted eigenvalues.
        !           300: *        It is either given by the user or computed in DLARRE.
        !           301:          WL = VL
        !           302:          WU = VU
        !           303:       ELSEIF( INDEIG ) THEN
        !           304: *        We do not reference IL, IU in the cases RANGE = 'V','A'
        !           305:          IIL = IL
        !           306:          IIU = IU
        !           307:       ENDIF
        !           308: *
        !           309:       INFO = 0
        !           310:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           311:          INFO = -1
        !           312:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
        !           313:          INFO = -2
        !           314:       ELSE IF( N.LT.0 ) THEN
        !           315:          INFO = -3
        !           316:       ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
        !           317:          INFO = -7
        !           318:       ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
        !           319:          INFO = -8
        !           320:       ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
        !           321:          INFO = -9
        !           322:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           323:          INFO = -13
        !           324:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           325:          INFO = -17
        !           326:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           327:          INFO = -19
        !           328:       END IF
        !           329: *
        !           330: *     Get machine constants.
        !           331: *
        !           332:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           333:       EPS = DLAMCH( 'Precision' )
        !           334:       SMLNUM = SAFMIN / EPS
        !           335:       BIGNUM = ONE / SMLNUM
        !           336:       RMIN = SQRT( SMLNUM )
        !           337:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
        !           338: *
        !           339:       IF( INFO.EQ.0 ) THEN
        !           340:          WORK( 1 ) = LWMIN
        !           341:          IWORK( 1 ) = LIWMIN
        !           342: *
        !           343:          IF( WANTZ .AND. ALLEIG ) THEN
        !           344:             NZCMIN = N
        !           345:          ELSE IF( WANTZ .AND. VALEIG ) THEN
        !           346:             CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN,
        !           347:      $                            NZCMIN, ITMP, ITMP2, INFO )
        !           348:          ELSE IF( WANTZ .AND. INDEIG ) THEN
        !           349:             NZCMIN = IIU-IIL+1
        !           350:          ELSE
        !           351: *           WANTZ .EQ. FALSE.
        !           352:             NZCMIN = 0
        !           353:          ENDIF
        !           354:          IF( ZQUERY .AND. INFO.EQ.0 ) THEN
        !           355:             Z( 1,1 ) = NZCMIN
        !           356:          ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
        !           357:             INFO = -14
        !           358:          END IF
        !           359:       END IF
        !           360: 
        !           361:       IF( INFO.NE.0 ) THEN
        !           362: *
        !           363:          CALL XERBLA( 'ZSTEMR', -INFO )
        !           364: *
        !           365:          RETURN
        !           366:       ELSE IF( LQUERY .OR. ZQUERY ) THEN
        !           367:          RETURN
        !           368:       END IF
        !           369: *
        !           370: *     Handle N = 0, 1, and 2 cases immediately
        !           371: *
        !           372:       M = 0
        !           373:       IF( N.EQ.0 )
        !           374:      $   RETURN
        !           375: *
        !           376:       IF( N.EQ.1 ) THEN
        !           377:          IF( ALLEIG .OR. INDEIG ) THEN
        !           378:             M = 1
        !           379:             W( 1 ) = D( 1 )
        !           380:          ELSE
        !           381:             IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
        !           382:                M = 1
        !           383:                W( 1 ) = D( 1 )
        !           384:             END IF
        !           385:          END IF
        !           386:          IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
        !           387:             Z( 1, 1 ) = ONE
        !           388:             ISUPPZ(1) = 1
        !           389:             ISUPPZ(2) = 1
        !           390:          END IF
        !           391:          RETURN
        !           392:       END IF
        !           393: *
        !           394:       IF( N.EQ.2 ) THEN
        !           395:          IF( .NOT.WANTZ ) THEN
        !           396:             CALL DLAE2( D(1), E(1), D(2), R1, R2 )
        !           397:          ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
        !           398:             CALL DLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
        !           399:          END IF
        !           400:          IF( ALLEIG.OR.
        !           401:      $      (VALEIG.AND.(R2.GT.WL).AND.
        !           402:      $                  (R2.LE.WU)).OR.
        !           403:      $      (INDEIG.AND.(IIL.EQ.1)) ) THEN
        !           404:             M = M+1
        !           405:             W( M ) = R2
        !           406:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
        !           407:                Z( 1, M ) = -SN
        !           408:                Z( 2, M ) = CS
        !           409: *              Note: At most one of SN and CS can be zero.
        !           410:                IF (SN.NE.ZERO) THEN
        !           411:                   IF (CS.NE.ZERO) THEN
        !           412:                      ISUPPZ(2*M-1) = 1
        !           413:                      ISUPPZ(2*M-1) = 2
        !           414:                   ELSE
        !           415:                      ISUPPZ(2*M-1) = 1
        !           416:                      ISUPPZ(2*M-1) = 1
        !           417:                   END IF
        !           418:                ELSE
        !           419:                   ISUPPZ(2*M-1) = 2
        !           420:                   ISUPPZ(2*M) = 2
        !           421:                END IF
        !           422:             ENDIF
        !           423:          ENDIF
        !           424:          IF( ALLEIG.OR.
        !           425:      $      (VALEIG.AND.(R1.GT.WL).AND.
        !           426:      $                  (R1.LE.WU)).OR.
        !           427:      $      (INDEIG.AND.(IIU.EQ.2)) ) THEN
        !           428:             M = M+1
        !           429:             W( M ) = R1
        !           430:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
        !           431:                Z( 1, M ) = CS
        !           432:                Z( 2, M ) = SN
        !           433: *              Note: At most one of SN and CS can be zero.
        !           434:                IF (SN.NE.ZERO) THEN
        !           435:                   IF (CS.NE.ZERO) THEN
        !           436:                      ISUPPZ(2*M-1) = 1
        !           437:                      ISUPPZ(2*M-1) = 2
        !           438:                   ELSE
        !           439:                      ISUPPZ(2*M-1) = 1
        !           440:                      ISUPPZ(2*M-1) = 1
        !           441:                   END IF
        !           442:                ELSE
        !           443:                   ISUPPZ(2*M-1) = 2
        !           444:                   ISUPPZ(2*M) = 2
        !           445:                END IF
        !           446:             ENDIF
        !           447:          ENDIF
        !           448:          RETURN
        !           449:       END IF
        !           450: 
        !           451: *     Continue with general N
        !           452: 
        !           453:       INDGRS = 1
        !           454:       INDERR = 2*N + 1
        !           455:       INDGP = 3*N + 1
        !           456:       INDD = 4*N + 1
        !           457:       INDE2 = 5*N + 1
        !           458:       INDWRK = 6*N + 1
        !           459: *
        !           460:       IINSPL = 1
        !           461:       IINDBL = N + 1
        !           462:       IINDW = 2*N + 1
        !           463:       IINDWK = 3*N + 1
        !           464: *
        !           465: *     Scale matrix to allowable range, if necessary.
        !           466: *     The allowable range is related to the PIVMIN parameter; see the
        !           467: *     comments in DLARRD.  The preference for scaling small values
        !           468: *     up is heuristic; we expect users' matrices not to be close to the
        !           469: *     RMAX threshold.
        !           470: *
        !           471:       SCALE = ONE
        !           472:       TNRM = DLANST( 'M', N, D, E )
        !           473:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
        !           474:          SCALE = RMIN / TNRM
        !           475:       ELSE IF( TNRM.GT.RMAX ) THEN
        !           476:          SCALE = RMAX / TNRM
        !           477:       END IF
        !           478:       IF( SCALE.NE.ONE ) THEN
        !           479:          CALL DSCAL( N, SCALE, D, 1 )
        !           480:          CALL DSCAL( N-1, SCALE, E, 1 )
        !           481:          TNRM = TNRM*SCALE
        !           482:          IF( VALEIG ) THEN
        !           483: *           If eigenvalues in interval have to be found,
        !           484: *           scale (WL, WU] accordingly
        !           485:             WL = WL*SCALE
        !           486:             WU = WU*SCALE
        !           487:          ENDIF
        !           488:       END IF
        !           489: *
        !           490: *     Compute the desired eigenvalues of the tridiagonal after splitting
        !           491: *     into smaller subblocks if the corresponding off-diagonal elements
        !           492: *     are small
        !           493: *     THRESH is the splitting parameter for DLARRE
        !           494: *     A negative THRESH forces the old splitting criterion based on the
        !           495: *     size of the off-diagonal. A positive THRESH switches to splitting
        !           496: *     which preserves relative accuracy.
        !           497: *
        !           498:       IF( TRYRAC ) THEN
        !           499: *        Test whether the matrix warrants the more expensive relative approach.
        !           500:          CALL DLARRR( N, D, E, IINFO )
        !           501:       ELSE
        !           502: *        The user does not care about relative accurately eigenvalues
        !           503:          IINFO = -1
        !           504:       ENDIF
        !           505: *     Set the splitting criterion
        !           506:       IF (IINFO.EQ.0) THEN
        !           507:          THRESH = EPS
        !           508:       ELSE
        !           509:          THRESH = -EPS
        !           510: *        relative accuracy is desired but T does not guarantee it
        !           511:          TRYRAC = .FALSE.
        !           512:       ENDIF
        !           513: *
        !           514:       IF( TRYRAC ) THEN
        !           515: *        Copy original diagonal, needed to guarantee relative accuracy
        !           516:          CALL DCOPY(N,D,1,WORK(INDD),1)
        !           517:       ENDIF
        !           518: *     Store the squares of the offdiagonal values of T
        !           519:       DO 5 J = 1, N-1
        !           520:          WORK( INDE2+J-1 ) = E(J)**2
        !           521:  5    CONTINUE
        !           522: 
        !           523: *     Set the tolerance parameters for bisection
        !           524:       IF( .NOT.WANTZ ) THEN
        !           525: *        DLARRE computes the eigenvalues to full precision.
        !           526:          RTOL1 = FOUR * EPS
        !           527:          RTOL2 = FOUR * EPS
        !           528:       ELSE
        !           529: *        DLARRE computes the eigenvalues to less than full precision.
        !           530: *        ZLARRV will refine the eigenvalue approximations, and we only
        !           531: *        need less accurate initial bisection in DLARRE.
        !           532: *        Note: these settings do only affect the subset case and DLARRE
        !           533:          RTOL1 = SQRT(EPS)
        !           534:          RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )
        !           535:       ENDIF
        !           536:       CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
        !           537:      $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
        !           538:      $             IWORK( IINSPL ), M, W, WORK( INDERR ),
        !           539:      $             WORK( INDGP ), IWORK( IINDBL ),
        !           540:      $             IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
        !           541:      $             WORK( INDWRK ), IWORK( IINDWK ), IINFO )
        !           542:       IF( IINFO.NE.0 ) THEN
        !           543:          INFO = 10 + ABS( IINFO )
        !           544:          RETURN
        !           545:       END IF
        !           546: *     Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
        !           547: *     part of the spectrum. All desired eigenvalues are contained in
        !           548: *     (WL,WU]
        !           549: 
        !           550: 
        !           551:       IF( WANTZ ) THEN
        !           552: *
        !           553: *        Compute the desired eigenvectors corresponding to the computed
        !           554: *        eigenvalues
        !           555: *
        !           556:          CALL ZLARRV( N, WL, WU, D, E,
        !           557:      $                PIVMIN, IWORK( IINSPL ), M,
        !           558:      $                1, M, MINRGP, RTOL1, RTOL2,
        !           559:      $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
        !           560:      $                IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
        !           561:      $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
        !           562:          IF( IINFO.NE.0 ) THEN
        !           563:             INFO = 20 + ABS( IINFO )
        !           564:             RETURN
        !           565:          END IF
        !           566:       ELSE
        !           567: *        DLARRE computes eigenvalues of the (shifted) root representation
        !           568: *        ZLARRV returns the eigenvalues of the unshifted matrix.
        !           569: *        However, if the eigenvectors are not desired by the user, we need
        !           570: *        to apply the corresponding shifts from DLARRE to obtain the
        !           571: *        eigenvalues of the original matrix.
        !           572:          DO 20 J = 1, M
        !           573:             ITMP = IWORK( IINDBL+J-1 )
        !           574:             W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
        !           575:  20      CONTINUE
        !           576:       END IF
        !           577: *
        !           578: 
        !           579:       IF ( TRYRAC ) THEN
        !           580: *        Refine computed eigenvalues so that they are relatively accurate
        !           581: *        with respect to the original matrix T.
        !           582:          IBEGIN = 1
        !           583:          WBEGIN = 1
        !           584:          DO 39  JBLK = 1, IWORK( IINDBL+M-1 )
        !           585:             IEND = IWORK( IINSPL+JBLK-1 )
        !           586:             IN = IEND - IBEGIN + 1
        !           587:             WEND = WBEGIN - 1
        !           588: *           check if any eigenvalues have to be refined in this block
        !           589:  36         CONTINUE
        !           590:             IF( WEND.LT.M ) THEN
        !           591:                IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
        !           592:                   WEND = WEND + 1
        !           593:                   GO TO 36
        !           594:                END IF
        !           595:             END IF
        !           596:             IF( WEND.LT.WBEGIN ) THEN
        !           597:                IBEGIN = IEND + 1
        !           598:                GO TO 39
        !           599:             END IF
        !           600: 
        !           601:             OFFSET = IWORK(IINDW+WBEGIN-1)-1
        !           602:             IFIRST = IWORK(IINDW+WBEGIN-1)
        !           603:             ILAST = IWORK(IINDW+WEND-1)
        !           604:             RTOL2 = FOUR * EPS
        !           605:             CALL DLARRJ( IN,
        !           606:      $                   WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
        !           607:      $                   IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
        !           608:      $                   WORK( INDERR+WBEGIN-1 ),
        !           609:      $                   WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
        !           610:      $                   TNRM, IINFO )
        !           611:             IBEGIN = IEND + 1
        !           612:             WBEGIN = WEND + 1
        !           613:  39      CONTINUE
        !           614:       ENDIF
        !           615: *
        !           616: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           617: *
        !           618:       IF( SCALE.NE.ONE ) THEN
        !           619:          CALL DSCAL( M, ONE / SCALE, W, 1 )
        !           620:       END IF
        !           621: *
        !           622: *     If eigenvalues are not in increasing order, then sort them,
        !           623: *     possibly along with eigenvectors.
        !           624: *
        !           625:       IF( NSPLIT.GT.1 ) THEN
        !           626:          IF( .NOT. WANTZ ) THEN
        !           627:             CALL DLASRT( 'I', M, W, IINFO )
        !           628:             IF( IINFO.NE.0 ) THEN
        !           629:                INFO = 3
        !           630:                RETURN
        !           631:             END IF
        !           632:          ELSE
        !           633:             DO 60 J = 1, M - 1
        !           634:                I = 0
        !           635:                TMP = W( J )
        !           636:                DO 50 JJ = J + 1, M
        !           637:                   IF( W( JJ ).LT.TMP ) THEN
        !           638:                      I = JJ
        !           639:                      TMP = W( JJ )
        !           640:                   END IF
        !           641:  50            CONTINUE
        !           642:                IF( I.NE.0 ) THEN
        !           643:                   W( I ) = W( J )
        !           644:                   W( J ) = TMP
        !           645:                   IF( WANTZ ) THEN
        !           646:                      CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
        !           647:                      ITMP = ISUPPZ( 2*I-1 )
        !           648:                      ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
        !           649:                      ISUPPZ( 2*J-1 ) = ITMP
        !           650:                      ITMP = ISUPPZ( 2*I )
        !           651:                      ISUPPZ( 2*I ) = ISUPPZ( 2*J )
        !           652:                      ISUPPZ( 2*J ) = ITMP
        !           653:                   END IF
        !           654:                END IF
        !           655:  60         CONTINUE
        !           656:          END IF
        !           657:       ENDIF
        !           658: *
        !           659: *
        !           660:       WORK( 1 ) = LWMIN
        !           661:       IWORK( 1 ) = LIWMIN
        !           662:       RETURN
        !           663: *
        !           664: *     End of ZSTEMR
        !           665: *
        !           666:       END

CVSweb interface <joel.bertrand@systella.fr>