--- rpl/lapack/lapack/zstemr.f 2010/08/06 15:29:01 1.3 +++ rpl/lapack/lapack/zstemr.f 2016/08/27 15:27:14 1.16 @@ -1,14 +1,347 @@ +*> \brief \b ZSTEMR +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download ZSTEMR + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, +* M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, +* IWORK, LIWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER JOBZ, RANGE +* LOGICAL TRYRAC +* INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N +* DOUBLE PRECISION VL, VU +* .. +* .. Array Arguments .. +* INTEGER ISUPPZ( * ), IWORK( * ) +* DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ) +* COMPLEX*16 Z( LDZ, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> ZSTEMR computes selected eigenvalues and, optionally, eigenvectors +*> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has +*> a well defined set of pairwise different real eigenvalues, the corresponding +*> real eigenvectors are pairwise orthogonal. +*> +*> The spectrum may be computed either completely or partially by specifying +*> either an interval (VL,VU] or a range of indices IL:IU for the desired +*> eigenvalues. +*> +*> Depending on the number of desired eigenvalues, these are computed either +*> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are +*> computed by the use of various suitable L D L^T factorizations near clusters +*> of close eigenvalues (referred to as RRRs, Relatively Robust +*> Representations). An informal sketch of the algorithm follows. +*> +*> For each unreduced block (submatrix) of T, +*> (a) Compute T - sigma I = L D L^T, so that L and D +*> define all the wanted eigenvalues to high relative accuracy. +*> This means that small relative changes in the entries of D and L +*> cause only small relative changes in the eigenvalues and +*> eigenvectors. The standard (unfactored) representation of the +*> tridiagonal matrix T does not have this property in general. +*> (b) Compute the eigenvalues to suitable accuracy. +*> If the eigenvectors are desired, the algorithm attains full +*> accuracy of the computed eigenvalues only right before +*> the corresponding vectors have to be computed, see steps c) and d). +*> (c) For each cluster of close eigenvalues, select a new +*> shift close to the cluster, find a new factorization, and refine +*> the shifted eigenvalues to suitable accuracy. +*> (d) For each eigenvalue with a large enough relative separation compute +*> the corresponding eigenvector by forming a rank revealing twisted +*> factorization. Go back to (c) for any clusters that remain. +*> +*> For more details, see: +*> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations +*> to compute orthogonal eigenvectors of symmetric tridiagonal matrices," +*> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. +*> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and +*> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, +*> 2004. Also LAPACK Working Note 154. +*> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric +*> tridiagonal eigenvalue/eigenvector problem", +*> Computer Science Division Technical Report No. UCB/CSD-97-971, +*> UC Berkeley, May 1997. +*> +*> Further Details +*> 1.ZSTEMR works only on machines which follow IEEE-754 +*> floating-point standard in their handling of infinities and NaNs. +*> This permits the use of efficient inner loops avoiding a check for +*> zero divisors. +*> +*> 2. LAPACK routines can be used to reduce a complex Hermitean matrix to +*> real symmetric tridiagonal form. +*> +*> (Any complex Hermitean tridiagonal matrix has real values on its diagonal +*> and potentially complex numbers on its off-diagonals. By applying a +*> similarity transform with an appropriate diagonal matrix +*> diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean +*> matrix can be transformed into a real symmetric matrix and complex +*> arithmetic can be entirely avoided.) +*> +*> While the eigenvectors of the real symmetric tridiagonal matrix are real, +*> the eigenvectors of original complex Hermitean matrix have complex entries +*> in general. +*> Since LAPACK drivers overwrite the matrix data with the eigenvectors, +*> ZSTEMR accepts complex workspace to facilitate interoperability +*> with ZUNMTR or ZUPMTR. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] JOBZ +*> \verbatim +*> JOBZ is CHARACTER*1 +*> = 'N': Compute eigenvalues only; +*> = 'V': Compute eigenvalues and eigenvectors. +*> \endverbatim +*> +*> \param[in] RANGE +*> \verbatim +*> RANGE is CHARACTER*1 +*> = 'A': all eigenvalues will be found. +*> = 'V': all eigenvalues in the half-open interval (VL,VU] +*> will be found. +*> = 'I': the IL-th through IU-th eigenvalues will be found. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix. N >= 0. +*> \endverbatim +*> +*> \param[in,out] D +*> \verbatim +*> D is DOUBLE PRECISION array, dimension (N) +*> On entry, the N diagonal elements of the tridiagonal matrix +*> T. On exit, D is overwritten. +*> \endverbatim +*> +*> \param[in,out] E +*> \verbatim +*> E is DOUBLE PRECISION array, dimension (N) +*> On entry, the (N-1) subdiagonal elements of the tridiagonal +*> matrix T in elements 1 to N-1 of E. E(N) need not be set on +*> input, but is used internally as workspace. +*> On exit, E is overwritten. +*> \endverbatim +*> +*> \param[in] VL +*> \verbatim +*> VL is DOUBLE PRECISION +*> +*> If RANGE='V', the lower bound of the interval to +*> be searched for eigenvalues. VL < VU. +*> Not referenced if RANGE = 'A' or 'I'. +*> \endverbatim +*> +*> \param[in] VU +*> \verbatim +*> VU is DOUBLE PRECISION +*> +*> If RANGE='V', the upper bound of the interval to +*> be searched for eigenvalues. VL < VU. +*> Not referenced if RANGE = 'A' or 'I'. +*> \endverbatim +*> +*> \param[in] IL +*> \verbatim +*> IL is INTEGER +*> +*> If RANGE='I', the index of the +*> smallest eigenvalue to be returned. +*> 1 <= IL <= IU <= N, if N > 0. +*> Not referenced if RANGE = 'A' or 'V'. +*> \endverbatim +*> +*> \param[in] IU +*> \verbatim +*> IU is INTEGER +*> +*> If RANGE='I', the index of the +*> largest eigenvalue to be returned. +*> 1 <= IL <= IU <= N, if N > 0. +*> Not referenced if RANGE = 'A' or 'V'. +*> \endverbatim +*> +*> \param[out] M +*> \verbatim +*> M is INTEGER +*> The total number of eigenvalues found. 0 <= M <= N. +*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. +*> \endverbatim +*> +*> \param[out] W +*> \verbatim +*> W is DOUBLE PRECISION array, dimension (N) +*> The first M elements contain the selected eigenvalues in +*> ascending order. +*> \endverbatim +*> +*> \param[out] Z +*> \verbatim +*> Z is COMPLEX*16 array, dimension (LDZ, max(1,M) ) +*> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z +*> contain the orthonormal eigenvectors of the matrix T +*> corresponding to the selected eigenvalues, with the i-th +*> column of Z holding the eigenvector associated with W(i). +*> If JOBZ = 'N', then Z is not referenced. +*> Note: the user must ensure that at least max(1,M) columns are +*> supplied in the array Z; if RANGE = 'V', the exact value of M +*> is not known in advance and can be computed with a workspace +*> query by setting NZC = -1, see below. +*> \endverbatim +*> +*> \param[in] LDZ +*> \verbatim +*> LDZ is INTEGER +*> The leading dimension of the array Z. LDZ >= 1, and if +*> JOBZ = 'V', then LDZ >= max(1,N). +*> \endverbatim +*> +*> \param[in] NZC +*> \verbatim +*> NZC is INTEGER +*> The number of eigenvectors to be held in the array Z. +*> If RANGE = 'A', then NZC >= max(1,N). +*> If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. +*> If RANGE = 'I', then NZC >= IU-IL+1. +*> If NZC = -1, then a workspace query is assumed; the +*> routine calculates the number of columns of the array Z that +*> are needed to hold the eigenvectors. +*> This value is returned as the first entry of the Z array, and +*> no error message related to NZC is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] ISUPPZ +*> \verbatim +*> ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) ) +*> The support of the eigenvectors in Z, i.e., the indices +*> indicating the nonzero elements in Z. The i-th computed eigenvector +*> is nonzero only in elements ISUPPZ( 2*i-1 ) through +*> ISUPPZ( 2*i ). This is relevant in the case when the matrix +*> is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. +*> \endverbatim +*> +*> \param[in,out] TRYRAC +*> \verbatim +*> TRYRAC is LOGICAL +*> If TRYRAC.EQ..TRUE., indicates that the code should check whether +*> the tridiagonal matrix defines its eigenvalues to high relative +*> accuracy. If so, the code uses relative-accuracy preserving +*> algorithms that might be (a bit) slower depending on the matrix. +*> If the matrix does not define its eigenvalues to high relative +*> accuracy, the code can uses possibly faster algorithms. +*> If TRYRAC.EQ..FALSE., the code is not required to guarantee +*> relatively accurate eigenvalues and can use the fastest possible +*> techniques. +*> On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix +*> does not define its eigenvalues to high relative accuracy. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (LWORK) +*> On exit, if INFO = 0, WORK(1) returns the optimal +*> (and minimal) LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. LWORK >= max(1,18*N) +*> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (LIWORK) +*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. +*> \endverbatim +*> +*> \param[in] LIWORK +*> \verbatim +*> LIWORK is INTEGER +*> The dimension of the array IWORK. LIWORK >= max(1,10*N) +*> if the eigenvectors are desired, and LIWORK >= max(1,8*N) +*> if only the eigenvalues are to be computed. +*> If LIWORK = -1, then a workspace query is assumed; the +*> routine only calculates the optimal size of the IWORK array, +*> returns this value as the first entry of the IWORK array, and +*> no error message related to LIWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> On exit, INFO +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> > 0: if INFO = 1X, internal error in DLARRE, +*> if INFO = 2X, internal error in ZLARRV. +*> Here, the digit X = ABS( IINFO ) < 10, where IINFO is +*> the nonzero error code returned by DLARRE or +*> ZLARRV, respectively. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date June 2016 +* +*> \ingroup complex16OTHERcomputational +* +*> \par Contributors: +* ================== +*> +*> Beresford Parlett, University of California, Berkeley, USA \n +*> Jim Demmel, University of California, Berkeley, USA \n +*> Inderjit Dhillon, University of Texas, Austin, USA \n +*> Osni Marques, LBNL/NERSC, USA \n +*> Christof Voemel, University of California, Berkeley, USA \n +* +* ===================================================================== SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, $ M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, $ IWORK, LIWORK, INFO ) - IMPLICIT NONE -* -* -- LAPACK computational routine (version 3.2.1) -- -* -* -- April 2009 -- * +* -- LAPACK computational routine (version 3.6.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* June 2016 * * .. Scalar Arguments .. CHARACTER JOBZ, RANGE @@ -22,215 +355,6 @@ COMPLEX*16 Z( LDZ, * ) * .. * -* Purpose -* ======= -* -* ZSTEMR computes selected eigenvalues and, optionally, eigenvectors -* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has -* a well defined set of pairwise different real eigenvalues, the corresponding -* real eigenvectors are pairwise orthogonal. -* -* The spectrum may be computed either completely or partially by specifying -* either an interval (VL,VU] or a range of indices IL:IU for the desired -* eigenvalues. -* -* Depending on the number of desired eigenvalues, these are computed either -* by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are -* computed by the use of various suitable L D L^T factorizations near clusters -* of close eigenvalues (referred to as RRRs, Relatively Robust -* Representations). An informal sketch of the algorithm follows. -* -* For each unreduced block (submatrix) of T, -* (a) Compute T - sigma I = L D L^T, so that L and D -* define all the wanted eigenvalues to high relative accuracy. -* This means that small relative changes in the entries of D and L -* cause only small relative changes in the eigenvalues and -* eigenvectors. The standard (unfactored) representation of the -* tridiagonal matrix T does not have this property in general. -* (b) Compute the eigenvalues to suitable accuracy. -* If the eigenvectors are desired, the algorithm attains full -* accuracy of the computed eigenvalues only right before -* the corresponding vectors have to be computed, see steps c) and d). -* (c) For each cluster of close eigenvalues, select a new -* shift close to the cluster, find a new factorization, and refine -* the shifted eigenvalues to suitable accuracy. -* (d) For each eigenvalue with a large enough relative separation compute -* the corresponding eigenvector by forming a rank revealing twisted -* factorization. Go back to (c) for any clusters that remain. -* -* For more details, see: -* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations -* to compute orthogonal eigenvectors of symmetric tridiagonal matrices," -* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. -* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and -* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, -* 2004. Also LAPACK Working Note 154. -* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric -* tridiagonal eigenvalue/eigenvector problem", -* Computer Science Division Technical Report No. UCB/CSD-97-971, -* UC Berkeley, May 1997. -* -* Further Details -* 1.ZSTEMR works only on machines which follow IEEE-754 -* floating-point standard in their handling of infinities and NaNs. -* This permits the use of efficient inner loops avoiding a check for -* zero divisors. -* -* 2. LAPACK routines can be used to reduce a complex Hermitean matrix to -* real symmetric tridiagonal form. -* -* (Any complex Hermitean tridiagonal matrix has real values on its diagonal -* and potentially complex numbers on its off-diagonals. By applying a -* similarity transform with an appropriate diagonal matrix -* diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean -* matrix can be transformed into a real symmetric matrix and complex -* arithmetic can be entirely avoided.) -* -* While the eigenvectors of the real symmetric tridiagonal matrix are real, -* the eigenvectors of original complex Hermitean matrix have complex entries -* in general. -* Since LAPACK drivers overwrite the matrix data with the eigenvectors, -* ZSTEMR accepts complex workspace to facilitate interoperability -* with ZUNMTR or ZUPMTR. -* -* Arguments -* ========= -* -* JOBZ (input) CHARACTER*1 -* = 'N': Compute eigenvalues only; -* = 'V': Compute eigenvalues and eigenvectors. -* -* RANGE (input) CHARACTER*1 -* = 'A': all eigenvalues will be found. -* = 'V': all eigenvalues in the half-open interval (VL,VU] -* will be found. -* = 'I': the IL-th through IU-th eigenvalues will be found. -* -* N (input) INTEGER -* The order of the matrix. N >= 0. -* -* D (input/output) DOUBLE PRECISION array, dimension (N) -* On entry, the N diagonal elements of the tridiagonal matrix -* T. On exit, D is overwritten. -* -* E (input/output) DOUBLE PRECISION array, dimension (N) -* On entry, the (N-1) subdiagonal elements of the tridiagonal -* matrix T in elements 1 to N-1 of E. E(N) need not be set on -* input, but is used internally as workspace. -* On exit, E is overwritten. -* -* VL (input) DOUBLE PRECISION -* VU (input) DOUBLE PRECISION -* If RANGE='V', the lower and upper bounds of the interval to -* be searched for eigenvalues. VL < VU. -* Not referenced if RANGE = 'A' or 'I'. -* -* IL (input) INTEGER -* IU (input) INTEGER -* If RANGE='I', the indices (in ascending order) of the -* smallest and largest eigenvalues to be returned. -* 1 <= IL <= IU <= N, if N > 0. -* Not referenced if RANGE = 'A' or 'V'. -* -* M (output) INTEGER -* The total number of eigenvalues found. 0 <= M <= N. -* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. -* -* W (output) DOUBLE PRECISION array, dimension (N) -* The first M elements contain the selected eigenvalues in -* ascending order. -* -* Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M) ) -* If JOBZ = 'V', and if INFO = 0, then the first M columns of Z -* contain the orthonormal eigenvectors of the matrix T -* corresponding to the selected eigenvalues, with the i-th -* column of Z holding the eigenvector associated with W(i). -* If JOBZ = 'N', then Z is not referenced. -* Note: the user must ensure that at least max(1,M) columns are -* supplied in the array Z; if RANGE = 'V', the exact value of M -* is not known in advance and can be computed with a workspace -* query by setting NZC = -1, see below. -* -* LDZ (input) INTEGER -* The leading dimension of the array Z. LDZ >= 1, and if -* JOBZ = 'V', then LDZ >= max(1,N). -* -* NZC (input) INTEGER -* The number of eigenvectors to be held in the array Z. -* If RANGE = 'A', then NZC >= max(1,N). -* If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. -* If RANGE = 'I', then NZC >= IU-IL+1. -* If NZC = -1, then a workspace query is assumed; the -* routine calculates the number of columns of the array Z that -* are needed to hold the eigenvectors. -* This value is returned as the first entry of the Z array, and -* no error message related to NZC is issued by XERBLA. -* -* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) -* The support of the eigenvectors in Z, i.e., the indices -* indicating the nonzero elements in Z. The i-th computed eigenvector -* is nonzero only in elements ISUPPZ( 2*i-1 ) through -* ISUPPZ( 2*i ). This is relevant in the case when the matrix -* is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. -* -* TRYRAC (input/output) LOGICAL -* If TRYRAC.EQ..TRUE., indicates that the code should check whether -* the tridiagonal matrix defines its eigenvalues to high relative -* accuracy. If so, the code uses relative-accuracy preserving -* algorithms that might be (a bit) slower depending on the matrix. -* If the matrix does not define its eigenvalues to high relative -* accuracy, the code can uses possibly faster algorithms. -* If TRYRAC.EQ..FALSE., the code is not required to guarantee -* relatively accurate eigenvalues and can use the fastest possible -* techniques. -* On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix -* does not define its eigenvalues to high relative accuracy. -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) -* On exit, if INFO = 0, WORK(1) returns the optimal -* (and minimal) LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,18*N) -* if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* IWORK (workspace/output) INTEGER array, dimension (LIWORK) -* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. -* -* LIWORK (input) INTEGER -* The dimension of the array IWORK. LIWORK >= max(1,10*N) -* if the eigenvectors are desired, and LIWORK >= max(1,8*N) -* if only the eigenvalues are to be computed. -* If LIWORK = -1, then a workspace query is assumed; the -* routine only calculates the optimal size of the IWORK array, -* returns this value as the first entry of the IWORK array, and -* no error message related to LIWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* On exit, INFO -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* > 0: if INFO = 1X, internal error in DLARRE, -* if INFO = 2X, internal error in ZLARRV. -* Here, the digit X = ABS( IINFO ) < 10, where IINFO is -* the nonzero error code returned by DLARRE or -* ZLARRV, respectively. -* -* -* Further Details -* =============== -* -* Based on contributions by -* Beresford Parlett, University of California, Berkeley, USA -* Jim Demmel, University of California, Berkeley, USA -* Inderjit Dhillon, University of Texas, Austin, USA -* Osni Marques, LBNL/NERSC, USA -* Christof Voemel, University of California, Berkeley, USA -* * ===================================================================== * * .. Parameters .. @@ -293,7 +417,8 @@ WU = ZERO IIL = 0 IIU = 0 - + NSPLIT = 0 + IF( VALEIG ) THEN * We do not reference VL, VU in the cases RANGE = 'I','A' * The interval (WL, WU] contains all the wanted eigenvalues. @@ -410,10 +535,10 @@ IF (SN.NE.ZERO) THEN IF (CS.NE.ZERO) THEN ISUPPZ(2*M-1) = 1 - ISUPPZ(2*M-1) = 2 + ISUPPZ(2*M) = 2 ELSE ISUPPZ(2*M-1) = 1 - ISUPPZ(2*M-1) = 1 + ISUPPZ(2*M) = 1 END IF ELSE ISUPPZ(2*M-1) = 2 @@ -434,10 +559,10 @@ IF (SN.NE.ZERO) THEN IF (CS.NE.ZERO) THEN ISUPPZ(2*M-1) = 1 - ISUPPZ(2*M-1) = 2 + ISUPPZ(2*M) = 2 ELSE ISUPPZ(2*M-1) = 1 - ISUPPZ(2*M-1) = 1 + ISUPPZ(2*M) = 1 END IF ELSE ISUPPZ(2*M-1) = 2 @@ -445,184 +570,184 @@ END IF ENDIF ENDIF - RETURN - END IF + ELSE -* Continue with general N +* Continue with general N - INDGRS = 1 - INDERR = 2*N + 1 - INDGP = 3*N + 1 - INDD = 4*N + 1 - INDE2 = 5*N + 1 - INDWRK = 6*N + 1 -* - IINSPL = 1 - IINDBL = N + 1 - IINDW = 2*N + 1 - IINDWK = 3*N + 1 -* -* Scale matrix to allowable range, if necessary. -* The allowable range is related to the PIVMIN parameter; see the -* comments in DLARRD. The preference for scaling small values -* up is heuristic; we expect users' matrices not to be close to the -* RMAX threshold. -* - SCALE = ONE - TNRM = DLANST( 'M', N, D, E ) - IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN - SCALE = RMIN / TNRM - ELSE IF( TNRM.GT.RMAX ) THEN - SCALE = RMAX / TNRM - END IF - IF( SCALE.NE.ONE ) THEN - CALL DSCAL( N, SCALE, D, 1 ) - CALL DSCAL( N-1, SCALE, E, 1 ) - TNRM = TNRM*SCALE - IF( VALEIG ) THEN -* If eigenvalues in interval have to be found, -* scale (WL, WU] accordingly - WL = WL*SCALE - WU = WU*SCALE - ENDIF - END IF + INDGRS = 1 + INDERR = 2*N + 1 + INDGP = 3*N + 1 + INDD = 4*N + 1 + INDE2 = 5*N + 1 + INDWRK = 6*N + 1 +* + IINSPL = 1 + IINDBL = N + 1 + IINDW = 2*N + 1 + IINDWK = 3*N + 1 +* +* Scale matrix to allowable range, if necessary. +* The allowable range is related to the PIVMIN parameter; see the +* comments in DLARRD. The preference for scaling small values +* up is heuristic; we expect users' matrices not to be close to the +* RMAX threshold. +* + SCALE = ONE + TNRM = DLANST( 'M', N, D, E ) + IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN + SCALE = RMIN / TNRM + ELSE IF( TNRM.GT.RMAX ) THEN + SCALE = RMAX / TNRM + END IF + IF( SCALE.NE.ONE ) THEN + CALL DSCAL( N, SCALE, D, 1 ) + CALL DSCAL( N-1, SCALE, E, 1 ) + TNRM = TNRM*SCALE + IF( VALEIG ) THEN +* If eigenvalues in interval have to be found, +* scale (WL, WU] accordingly + WL = WL*SCALE + WU = WU*SCALE + ENDIF + END IF * -* Compute the desired eigenvalues of the tridiagonal after splitting -* into smaller subblocks if the corresponding off-diagonal elements -* are small -* THRESH is the splitting parameter for DLARRE -* A negative THRESH forces the old splitting criterion based on the -* size of the off-diagonal. A positive THRESH switches to splitting -* which preserves relative accuracy. -* - IF( TRYRAC ) THEN -* Test whether the matrix warrants the more expensive relative approach. - CALL DLARRR( N, D, E, IINFO ) - ELSE -* The user does not care about relative accurately eigenvalues - IINFO = -1 - ENDIF -* Set the splitting criterion - IF (IINFO.EQ.0) THEN - THRESH = EPS - ELSE - THRESH = -EPS -* relative accuracy is desired but T does not guarantee it - TRYRAC = .FALSE. - ENDIF +* Compute the desired eigenvalues of the tridiagonal after splitting +* into smaller subblocks if the corresponding off-diagonal elements +* are small +* THRESH is the splitting parameter for DLARRE +* A negative THRESH forces the old splitting criterion based on the +* size of the off-diagonal. A positive THRESH switches to splitting +* which preserves relative accuracy. +* + IF( TRYRAC ) THEN +* Test whether the matrix warrants the more expensive relative approach. + CALL DLARRR( N, D, E, IINFO ) + ELSE +* The user does not care about relative accurately eigenvalues + IINFO = -1 + ENDIF +* Set the splitting criterion + IF (IINFO.EQ.0) THEN + THRESH = EPS + ELSE + THRESH = -EPS +* relative accuracy is desired but T does not guarantee it + TRYRAC = .FALSE. + ENDIF * - IF( TRYRAC ) THEN -* Copy original diagonal, needed to guarantee relative accuracy - CALL DCOPY(N,D,1,WORK(INDD),1) - ENDIF -* Store the squares of the offdiagonal values of T - DO 5 J = 1, N-1 - WORK( INDE2+J-1 ) = E(J)**2 + IF( TRYRAC ) THEN +* Copy original diagonal, needed to guarantee relative accuracy + CALL DCOPY(N,D,1,WORK(INDD),1) + ENDIF +* Store the squares of the offdiagonal values of T + DO 5 J = 1, N-1 + WORK( INDE2+J-1 ) = E(J)**2 5 CONTINUE -* Set the tolerance parameters for bisection - IF( .NOT.WANTZ ) THEN -* DLARRE computes the eigenvalues to full precision. - RTOL1 = FOUR * EPS - RTOL2 = FOUR * EPS - ELSE -* DLARRE computes the eigenvalues to less than full precision. -* ZLARRV will refine the eigenvalue approximations, and we only -* need less accurate initial bisection in DLARRE. -* Note: these settings do only affect the subset case and DLARRE - RTOL1 = SQRT(EPS) - RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS ) - ENDIF - CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E, +* Set the tolerance parameters for bisection + IF( .NOT.WANTZ ) THEN +* DLARRE computes the eigenvalues to full precision. + RTOL1 = FOUR * EPS + RTOL2 = FOUR * EPS + ELSE +* DLARRE computes the eigenvalues to less than full precision. +* ZLARRV will refine the eigenvalue approximations, and we only +* need less accurate initial bisection in DLARRE. +* Note: these settings do only affect the subset case and DLARRE + RTOL1 = SQRT(EPS) + RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS ) + ENDIF + CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E, $ WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT, $ IWORK( IINSPL ), M, W, WORK( INDERR ), $ WORK( INDGP ), IWORK( IINDBL ), $ IWORK( IINDW ), WORK( INDGRS ), PIVMIN, $ WORK( INDWRK ), IWORK( IINDWK ), IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = 10 + ABS( IINFO ) - RETURN - END IF -* Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired -* part of the spectrum. All desired eigenvalues are contained in -* (WL,WU] + IF( IINFO.NE.0 ) THEN + INFO = 10 + ABS( IINFO ) + RETURN + END IF +* Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired +* part of the spectrum. All desired eigenvalues are contained in +* (WL,WU] - IF( WANTZ ) THEN + IF( WANTZ ) THEN * -* Compute the desired eigenvectors corresponding to the computed -* eigenvalues +* Compute the desired eigenvectors corresponding to the computed +* eigenvalues * - CALL ZLARRV( N, WL, WU, D, E, + CALL ZLARRV( N, WL, WU, D, E, $ PIVMIN, IWORK( IINSPL ), M, $ 1, M, MINRGP, RTOL1, RTOL2, $ W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ), $ IWORK( IINDW ), WORK( INDGRS ), Z, LDZ, $ ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = 20 + ABS( IINFO ) - RETURN - END IF - ELSE -* DLARRE computes eigenvalues of the (shifted) root representation -* ZLARRV returns the eigenvalues of the unshifted matrix. -* However, if the eigenvectors are not desired by the user, we need -* to apply the corresponding shifts from DLARRE to obtain the -* eigenvalues of the original matrix. - DO 20 J = 1, M - ITMP = IWORK( IINDBL+J-1 ) - W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) ) + IF( IINFO.NE.0 ) THEN + INFO = 20 + ABS( IINFO ) + RETURN + END IF + ELSE +* DLARRE computes eigenvalues of the (shifted) root representation +* ZLARRV returns the eigenvalues of the unshifted matrix. +* However, if the eigenvectors are not desired by the user, we need +* to apply the corresponding shifts from DLARRE to obtain the +* eigenvalues of the original matrix. + DO 20 J = 1, M + ITMP = IWORK( IINDBL+J-1 ) + W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) ) 20 CONTINUE - END IF + END IF * - IF ( TRYRAC ) THEN -* Refine computed eigenvalues so that they are relatively accurate -* with respect to the original matrix T. - IBEGIN = 1 - WBEGIN = 1 - DO 39 JBLK = 1, IWORK( IINDBL+M-1 ) - IEND = IWORK( IINSPL+JBLK-1 ) - IN = IEND - IBEGIN + 1 - WEND = WBEGIN - 1 -* check if any eigenvalues have to be refined in this block + IF ( TRYRAC ) THEN +* Refine computed eigenvalues so that they are relatively accurate +* with respect to the original matrix T. + IBEGIN = 1 + WBEGIN = 1 + DO 39 JBLK = 1, IWORK( IINDBL+M-1 ) + IEND = IWORK( IINSPL+JBLK-1 ) + IN = IEND - IBEGIN + 1 + WEND = WBEGIN - 1 +* check if any eigenvalues have to be refined in this block 36 CONTINUE - IF( WEND.LT.M ) THEN - IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN - WEND = WEND + 1 - GO TO 36 + IF( WEND.LT.M ) THEN + IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN + WEND = WEND + 1 + GO TO 36 + END IF + END IF + IF( WEND.LT.WBEGIN ) THEN + IBEGIN = IEND + 1 + GO TO 39 END IF - END IF - IF( WEND.LT.WBEGIN ) THEN - IBEGIN = IEND + 1 - GO TO 39 - END IF - OFFSET = IWORK(IINDW+WBEGIN-1)-1 - IFIRST = IWORK(IINDW+WBEGIN-1) - ILAST = IWORK(IINDW+WEND-1) - RTOL2 = FOUR * EPS - CALL DLARRJ( IN, + OFFSET = IWORK(IINDW+WBEGIN-1)-1 + IFIRST = IWORK(IINDW+WBEGIN-1) + ILAST = IWORK(IINDW+WEND-1) + RTOL2 = FOUR * EPS + CALL DLARRJ( IN, $ WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1), $ IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN), $ WORK( INDERR+WBEGIN-1 ), $ WORK( INDWRK ), IWORK( IINDWK ), PIVMIN, $ TNRM, IINFO ) - IBEGIN = IEND + 1 - WBEGIN = WEND + 1 + IBEGIN = IEND + 1 + WBEGIN = WEND + 1 39 CONTINUE - ENDIF + ENDIF * -* If matrix was scaled, then rescale eigenvalues appropriately. +* If matrix was scaled, then rescale eigenvalues appropriately. * - IF( SCALE.NE.ONE ) THEN - CALL DSCAL( M, ONE / SCALE, W, 1 ) + IF( SCALE.NE.ONE ) THEN + CALL DSCAL( M, ONE / SCALE, W, 1 ) + END IF END IF * * If eigenvalues are not in increasing order, then sort them, * possibly along with eigenvectors. * - IF( NSPLIT.GT.1 ) THEN + IF( NSPLIT.GT.1 .OR. N.EQ.2 ) THEN IF( .NOT. WANTZ ) THEN CALL DLASRT( 'I', M, W, IINFO ) IF( IINFO.NE.0 ) THEN