Annotation of rpl/lapack/lapack/zstein.f, revision 1.18

1.8       bertrand    1: *> \brief \b ZSTEIN
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZSTEIN + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zstein.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zstein.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zstein.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
                     22: *                          IWORK, IFAIL, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDZ, M, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
                     29: *      $                   IWORK( * )
                     30: *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
                     31: *       COMPLEX*16         Z( LDZ, * )
                     32: *       ..
1.15      bertrand   33: *
1.8       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> ZSTEIN computes the eigenvectors of a real symmetric tridiagonal
                     41: *> matrix T corresponding to specified eigenvalues, using inverse
                     42: *> iteration.
                     43: *>
                     44: *> The maximum number of iterations allowed for each eigenvector is
                     45: *> specified by an internal parameter MAXITS (currently set to 5).
                     46: *>
                     47: *> Although the eigenvectors are real, they are stored in a complex
                     48: *> array, which may be passed to ZUNMTR or ZUPMTR for back
                     49: *> transformation to the eigenvectors of a complex Hermitian matrix
                     50: *> which was reduced to tridiagonal form.
                     51: *>
                     52: *> \endverbatim
                     53: *
                     54: *  Arguments:
                     55: *  ==========
                     56: *
                     57: *> \param[in] N
                     58: *> \verbatim
                     59: *>          N is INTEGER
                     60: *>          The order of the matrix.  N >= 0.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] D
                     64: *> \verbatim
                     65: *>          D is DOUBLE PRECISION array, dimension (N)
                     66: *>          The n diagonal elements of the tridiagonal matrix T.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] E
                     70: *> \verbatim
                     71: *>          E is DOUBLE PRECISION array, dimension (N-1)
                     72: *>          The (n-1) subdiagonal elements of the tridiagonal matrix
                     73: *>          T, stored in elements 1 to N-1.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] M
                     77: *> \verbatim
                     78: *>          M is INTEGER
                     79: *>          The number of eigenvectors to be found.  0 <= M <= N.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] W
                     83: *> \verbatim
                     84: *>          W is DOUBLE PRECISION array, dimension (N)
                     85: *>          The first M elements of W contain the eigenvalues for
                     86: *>          which eigenvectors are to be computed.  The eigenvalues
                     87: *>          should be grouped by split-off block and ordered from
                     88: *>          smallest to largest within the block.  ( The output array
                     89: *>          W from DSTEBZ with ORDER = 'B' is expected here. )
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] IBLOCK
                     93: *> \verbatim
                     94: *>          IBLOCK is INTEGER array, dimension (N)
                     95: *>          The submatrix indices associated with the corresponding
                     96: *>          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
                     97: *>          the first submatrix from the top, =2 if W(i) belongs to
                     98: *>          the second submatrix, etc.  ( The output array IBLOCK
                     99: *>          from DSTEBZ is expected here. )
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] ISPLIT
                    103: *> \verbatim
                    104: *>          ISPLIT is INTEGER array, dimension (N)
                    105: *>          The splitting points, at which T breaks up into submatrices.
                    106: *>          The first submatrix consists of rows/columns 1 to
                    107: *>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
                    108: *>          through ISPLIT( 2 ), etc.
                    109: *>          ( The output array ISPLIT from DSTEBZ is expected here. )
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[out] Z
                    113: *> \verbatim
                    114: *>          Z is COMPLEX*16 array, dimension (LDZ, M)
                    115: *>          The computed eigenvectors.  The eigenvector associated
                    116: *>          with the eigenvalue W(i) is stored in the i-th column of
                    117: *>          Z.  Any vector which fails to converge is set to its current
                    118: *>          iterate after MAXITS iterations.
                    119: *>          The imaginary parts of the eigenvectors are set to zero.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] LDZ
                    123: *> \verbatim
                    124: *>          LDZ is INTEGER
                    125: *>          The leading dimension of the array Z.  LDZ >= max(1,N).
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[out] WORK
                    129: *> \verbatim
                    130: *>          WORK is DOUBLE PRECISION array, dimension (5*N)
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[out] IWORK
                    134: *> \verbatim
                    135: *>          IWORK is INTEGER array, dimension (N)
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] IFAIL
                    139: *> \verbatim
                    140: *>          IFAIL is INTEGER array, dimension (M)
                    141: *>          On normal exit, all elements of IFAIL are zero.
                    142: *>          If one or more eigenvectors fail to converge after
                    143: *>          MAXITS iterations, then their indices are stored in
                    144: *>          array IFAIL.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[out] INFO
                    148: *> \verbatim
                    149: *>          INFO is INTEGER
                    150: *>          = 0: successful exit
                    151: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    152: *>          > 0: if INFO = i, then i eigenvectors failed to converge
                    153: *>               in MAXITS iterations.  Their indices are stored in
                    154: *>               array IFAIL.
                    155: *> \endverbatim
                    156: *
                    157: *> \par Internal Parameters:
                    158: *  =========================
                    159: *>
                    160: *> \verbatim
                    161: *>  MAXITS  INTEGER, default = 5
                    162: *>          The maximum number of iterations performed.
                    163: *>
                    164: *>  EXTRA   INTEGER, default = 2
                    165: *>          The number of iterations performed after norm growth
                    166: *>          criterion is satisfied, should be at least 1.
                    167: *> \endverbatim
                    168: *
                    169: *  Authors:
                    170: *  ========
                    171: *
1.15      bertrand  172: *> \author Univ. of Tennessee
                    173: *> \author Univ. of California Berkeley
                    174: *> \author Univ. of Colorado Denver
                    175: *> \author NAG Ltd.
1.8       bertrand  176: *
                    177: *> \ingroup complex16OTHERcomputational
                    178: *
                    179: *  =====================================================================
1.1       bertrand  180:       SUBROUTINE ZSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
                    181:      $                   IWORK, IFAIL, INFO )
                    182: *
1.18    ! bertrand  183: *  -- LAPACK computational routine --
1.1       bertrand  184: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    185: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    186: *
                    187: *     .. Scalar Arguments ..
                    188:       INTEGER            INFO, LDZ, M, N
                    189: *     ..
                    190: *     .. Array Arguments ..
                    191:       INTEGER            IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
                    192:      $                   IWORK( * )
                    193:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
                    194:       COMPLEX*16         Z( LDZ, * )
                    195: *     ..
                    196: *
                    197: * =====================================================================
                    198: *
                    199: *     .. Parameters ..
                    200:       COMPLEX*16         CZERO, CONE
                    201:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    202:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    203:       DOUBLE PRECISION   ZERO, ONE, TEN, ODM3, ODM1
                    204:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1,
                    205:      $                   ODM3 = 1.0D-3, ODM1 = 1.0D-1 )
                    206:       INTEGER            MAXITS, EXTRA
                    207:       PARAMETER          ( MAXITS = 5, EXTRA = 2 )
                    208: *     ..
                    209: *     .. Local Scalars ..
                    210:       INTEGER            B1, BLKSIZ, BN, GPIND, I, IINFO, INDRV1,
                    211:      $                   INDRV2, INDRV3, INDRV4, INDRV5, ITS, J, J1,
                    212:      $                   JBLK, JMAX, JR, NBLK, NRMCHK
                    213:       DOUBLE PRECISION   DTPCRT, EPS, EPS1, NRM, ONENRM, ORTOL, PERTOL,
                    214:      $                   SCL, SEP, TOL, XJ, XJM, ZTR
                    215: *     ..
                    216: *     .. Local Arrays ..
                    217:       INTEGER            ISEED( 4 )
                    218: *     ..
                    219: *     .. External Functions ..
                    220:       INTEGER            IDAMAX
1.15      bertrand  221:       DOUBLE PRECISION   DLAMCH, DNRM2
                    222:       EXTERNAL           IDAMAX, DLAMCH, DNRM2
1.1       bertrand  223: *     ..
                    224: *     .. External Subroutines ..
                    225:       EXTERNAL           DCOPY, DLAGTF, DLAGTS, DLARNV, DSCAL, XERBLA
                    226: *     ..
                    227: *     .. Intrinsic Functions ..
                    228:       INTRINSIC          ABS, DBLE, DCMPLX, MAX, SQRT
                    229: *     ..
                    230: *     .. Executable Statements ..
                    231: *
                    232: *     Test the input parameters.
                    233: *
                    234:       INFO = 0
                    235:       DO 10 I = 1, M
                    236:          IFAIL( I ) = 0
                    237:    10 CONTINUE
                    238: *
                    239:       IF( N.LT.0 ) THEN
                    240:          INFO = -1
                    241:       ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
                    242:          INFO = -4
                    243:       ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
                    244:          INFO = -9
                    245:       ELSE
                    246:          DO 20 J = 2, M
                    247:             IF( IBLOCK( J ).LT.IBLOCK( J-1 ) ) THEN
                    248:                INFO = -6
                    249:                GO TO 30
                    250:             END IF
                    251:             IF( IBLOCK( J ).EQ.IBLOCK( J-1 ) .AND. W( J ).LT.W( J-1 ) )
                    252:      $           THEN
                    253:                INFO = -5
                    254:                GO TO 30
                    255:             END IF
                    256:    20    CONTINUE
                    257:    30    CONTINUE
                    258:       END IF
                    259: *
                    260:       IF( INFO.NE.0 ) THEN
                    261:          CALL XERBLA( 'ZSTEIN', -INFO )
                    262:          RETURN
                    263:       END IF
                    264: *
                    265: *     Quick return if possible
                    266: *
                    267:       IF( N.EQ.0 .OR. M.EQ.0 ) THEN
                    268:          RETURN
                    269:       ELSE IF( N.EQ.1 ) THEN
                    270:          Z( 1, 1 ) = CONE
                    271:          RETURN
                    272:       END IF
                    273: *
                    274: *     Get machine constants.
                    275: *
                    276:       EPS = DLAMCH( 'Precision' )
                    277: *
                    278: *     Initialize seed for random number generator DLARNV.
                    279: *
                    280:       DO 40 I = 1, 4
                    281:          ISEED( I ) = 1
                    282:    40 CONTINUE
                    283: *
                    284: *     Initialize pointers.
                    285: *
                    286:       INDRV1 = 0
                    287:       INDRV2 = INDRV1 + N
                    288:       INDRV3 = INDRV2 + N
                    289:       INDRV4 = INDRV3 + N
                    290:       INDRV5 = INDRV4 + N
                    291: *
                    292: *     Compute eigenvectors of matrix blocks.
                    293: *
                    294:       J1 = 1
                    295:       DO 180 NBLK = 1, IBLOCK( M )
                    296: *
                    297: *        Find starting and ending indices of block nblk.
                    298: *
                    299:          IF( NBLK.EQ.1 ) THEN
                    300:             B1 = 1
                    301:          ELSE
                    302:             B1 = ISPLIT( NBLK-1 ) + 1
                    303:          END IF
                    304:          BN = ISPLIT( NBLK )
                    305:          BLKSIZ = BN - B1 + 1
                    306:          IF( BLKSIZ.EQ.1 )
                    307:      $      GO TO 60
1.13      bertrand  308:          GPIND = J1
1.1       bertrand  309: *
                    310: *        Compute reorthogonalization criterion and stopping criterion.
                    311: *
                    312:          ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
                    313:          ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
                    314:          DO 50 I = B1 + 1, BN - 1
                    315:             ONENRM = MAX( ONENRM, ABS( D( I ) )+ABS( E( I-1 ) )+
                    316:      $               ABS( E( I ) ) )
                    317:    50    CONTINUE
                    318:          ORTOL = ODM3*ONENRM
                    319: *
                    320:          DTPCRT = SQRT( ODM1 / BLKSIZ )
                    321: *
                    322: *        Loop through eigenvalues of block nblk.
                    323: *
                    324:    60    CONTINUE
                    325:          JBLK = 0
                    326:          DO 170 J = J1, M
                    327:             IF( IBLOCK( J ).NE.NBLK ) THEN
                    328:                J1 = J
                    329:                GO TO 180
                    330:             END IF
                    331:             JBLK = JBLK + 1
                    332:             XJ = W( J )
                    333: *
                    334: *           Skip all the work if the block size is one.
                    335: *
                    336:             IF( BLKSIZ.EQ.1 ) THEN
                    337:                WORK( INDRV1+1 ) = ONE
                    338:                GO TO 140
                    339:             END IF
                    340: *
                    341: *           If eigenvalues j and j-1 are too close, add a relatively
                    342: *           small perturbation.
                    343: *
                    344:             IF( JBLK.GT.1 ) THEN
                    345:                EPS1 = ABS( EPS*XJ )
                    346:                PERTOL = TEN*EPS1
                    347:                SEP = XJ - XJM
                    348:                IF( SEP.LT.PERTOL )
                    349:      $            XJ = XJM + PERTOL
                    350:             END IF
                    351: *
                    352:             ITS = 0
                    353:             NRMCHK = 0
                    354: *
                    355: *           Get random starting vector.
                    356: *
                    357:             CALL DLARNV( 2, ISEED, BLKSIZ, WORK( INDRV1+1 ) )
                    358: *
                    359: *           Copy the matrix T so it won't be destroyed in factorization.
                    360: *
                    361:             CALL DCOPY( BLKSIZ, D( B1 ), 1, WORK( INDRV4+1 ), 1 )
                    362:             CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV2+2 ), 1 )
                    363:             CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV3+1 ), 1 )
                    364: *
                    365: *           Compute LU factors with partial pivoting  ( PT = LU )
                    366: *
                    367:             TOL = ZERO
                    368:             CALL DLAGTF( BLKSIZ, WORK( INDRV4+1 ), XJ, WORK( INDRV2+2 ),
                    369:      $                   WORK( INDRV3+1 ), TOL, WORK( INDRV5+1 ), IWORK,
                    370:      $                   IINFO )
                    371: *
                    372: *           Update iteration count.
                    373: *
                    374:    70       CONTINUE
                    375:             ITS = ITS + 1
                    376:             IF( ITS.GT.MAXITS )
                    377:      $         GO TO 120
                    378: *
                    379: *           Normalize and scale the righthand side vector Pb.
                    380: *
1.13      bertrand  381:             JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
1.1       bertrand  382:             SCL = BLKSIZ*ONENRM*MAX( EPS,
                    383:      $            ABS( WORK( INDRV4+BLKSIZ ) ) ) /
1.13      bertrand  384:      $            ABS( WORK( INDRV1+JMAX ) )
1.1       bertrand  385:             CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
                    386: *
                    387: *           Solve the system LU = Pb.
                    388: *
                    389:             CALL DLAGTS( -1, BLKSIZ, WORK( INDRV4+1 ), WORK( INDRV2+2 ),
                    390:      $                   WORK( INDRV3+1 ), WORK( INDRV5+1 ), IWORK,
                    391:      $                   WORK( INDRV1+1 ), TOL, IINFO )
                    392: *
                    393: *           Reorthogonalize by modified Gram-Schmidt if eigenvalues are
                    394: *           close enough.
                    395: *
                    396:             IF( JBLK.EQ.1 )
                    397:      $         GO TO 110
                    398:             IF( ABS( XJ-XJM ).GT.ORTOL )
                    399:      $         GPIND = J
                    400:             IF( GPIND.NE.J ) THEN
                    401:                DO 100 I = GPIND, J - 1
                    402:                   ZTR = ZERO
                    403:                   DO 80 JR = 1, BLKSIZ
                    404:                      ZTR = ZTR + WORK( INDRV1+JR )*
                    405:      $                     DBLE( Z( B1-1+JR, I ) )
                    406:    80             CONTINUE
                    407:                   DO 90 JR = 1, BLKSIZ
                    408:                      WORK( INDRV1+JR ) = WORK( INDRV1+JR ) -
                    409:      $                                   ZTR*DBLE( Z( B1-1+JR, I ) )
                    410:    90             CONTINUE
                    411:   100          CONTINUE
                    412:             END IF
                    413: *
                    414: *           Check the infinity norm of the iterate.
                    415: *
                    416:   110       CONTINUE
                    417:             JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
                    418:             NRM = ABS( WORK( INDRV1+JMAX ) )
                    419: *
                    420: *           Continue for additional iterations after norm reaches
                    421: *           stopping criterion.
                    422: *
                    423:             IF( NRM.LT.DTPCRT )
                    424:      $         GO TO 70
                    425:             NRMCHK = NRMCHK + 1
                    426:             IF( NRMCHK.LT.EXTRA+1 )
                    427:      $         GO TO 70
                    428: *
                    429:             GO TO 130
                    430: *
                    431: *           If stopping criterion was not satisfied, update info and
                    432: *           store eigenvector number in array ifail.
                    433: *
                    434:   120       CONTINUE
                    435:             INFO = INFO + 1
                    436:             IFAIL( INFO ) = J
                    437: *
                    438: *           Accept iterate as jth eigenvector.
                    439: *
                    440:   130       CONTINUE
                    441:             SCL = ONE / DNRM2( BLKSIZ, WORK( INDRV1+1 ), 1 )
                    442:             JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
                    443:             IF( WORK( INDRV1+JMAX ).LT.ZERO )
                    444:      $         SCL = -SCL
                    445:             CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
                    446:   140       CONTINUE
                    447:             DO 150 I = 1, N
                    448:                Z( I, J ) = CZERO
                    449:   150       CONTINUE
                    450:             DO 160 I = 1, BLKSIZ
                    451:                Z( B1+I-1, J ) = DCMPLX( WORK( INDRV1+I ), ZERO )
                    452:   160       CONTINUE
                    453: *
                    454: *           Save the shift to check eigenvalue spacing at next
                    455: *           iteration.
                    456: *
                    457:             XJM = XJ
                    458: *
                    459:   170    CONTINUE
                    460:   180 CONTINUE
                    461: *
                    462:       RETURN
                    463: *
                    464: *     End of ZSTEIN
                    465: *
                    466:       END

CVSweb interface <joel.bertrand@systella.fr>