Annotation of rpl/lapack/lapack/zstegr.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE ZSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
                      2:      $           ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
                      3:      $           LIWORK, INFO )
                      4: 
                      5:       IMPLICIT NONE
                      6: *
                      7: *
                      8: *  -- LAPACK computational routine (version 3.2) --
                      9: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                     10: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                     11: *     November 2006
                     12: *
                     13: *     .. Scalar Arguments ..
                     14:       CHARACTER          JOBZ, RANGE
                     15:       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
                     16:       DOUBLE PRECISION ABSTOL, VL, VU
                     17: *     ..
                     18: *     .. Array Arguments ..
                     19:       INTEGER            ISUPPZ( * ), IWORK( * )
                     20:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
                     21:       COMPLEX*16         Z( LDZ, * )
                     22: *     ..
                     23: *
                     24: *  Purpose
                     25: *  =======
                     26: *
                     27: *  ZSTEGR computes selected eigenvalues and, optionally, eigenvectors
                     28: *  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
                     29: *  a well defined set of pairwise different real eigenvalues, the corresponding
                     30: *  real eigenvectors are pairwise orthogonal.
                     31: *
                     32: *  The spectrum may be computed either completely or partially by specifying
                     33: *  either an interval (VL,VU] or a range of indices IL:IU for the desired
                     34: *  eigenvalues.
                     35: *
                     36: *  ZSTEGR is a compatability wrapper around the improved ZSTEMR routine.
                     37: *  See DSTEMR for further details.
                     38: *
                     39: *  One important change is that the ABSTOL parameter no longer provides any
                     40: *  benefit and hence is no longer used.
                     41: *
                     42: *  Note : ZSTEGR and ZSTEMR work only on machines which follow
                     43: *  IEEE-754 floating-point standard in their handling of infinities and
                     44: *  NaNs.  Normal execution may create these exceptiona values and hence
                     45: *  may abort due to a floating point exception in environments which
                     46: *  do not conform to the IEEE-754 standard.
                     47: *
                     48: *  Arguments
                     49: *  =========
                     50: *
                     51: *  JOBZ    (input) CHARACTER*1
                     52: *          = 'N':  Compute eigenvalues only;
                     53: *          = 'V':  Compute eigenvalues and eigenvectors.
                     54: *
                     55: *  RANGE   (input) CHARACTER*1
                     56: *          = 'A': all eigenvalues will be found.
                     57: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     58: *                 will be found.
                     59: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     60: *
                     61: *  N       (input) INTEGER
                     62: *          The order of the matrix.  N >= 0.
                     63: *
                     64: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
                     65: *          On entry, the N diagonal elements of the tridiagonal matrix
                     66: *          T. On exit, D is overwritten.
                     67: *
                     68: *  E       (input/output) DOUBLE PRECISION array, dimension (N)
                     69: *          On entry, the (N-1) subdiagonal elements of the tridiagonal
                     70: *          matrix T in elements 1 to N-1 of E. E(N) need not be set on
                     71: *          input, but is used internally as workspace.
                     72: *          On exit, E is overwritten.
                     73: *
                     74: *  VL      (input) DOUBLE PRECISION
                     75: *  VU      (input) DOUBLE PRECISION
                     76: *          If RANGE='V', the lower and upper bounds of the interval to
                     77: *          be searched for eigenvalues. VL < VU.
                     78: *          Not referenced if RANGE = 'A' or 'I'.
                     79: *
                     80: *  IL      (input) INTEGER
                     81: *  IU      (input) INTEGER
                     82: *          If RANGE='I', the indices (in ascending order) of the
                     83: *          smallest and largest eigenvalues to be returned.
                     84: *          1 <= IL <= IU <= N, if N > 0.
                     85: *          Not referenced if RANGE = 'A' or 'V'.
                     86: *
                     87: *  ABSTOL  (input) DOUBLE PRECISION
                     88: *          Unused.  Was the absolute error tolerance for the
                     89: *          eigenvalues/eigenvectors in previous versions.
                     90: *
                     91: *  M       (output) INTEGER
                     92: *          The total number of eigenvalues found.  0 <= M <= N.
                     93: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                     94: *
                     95: *  W       (output) DOUBLE PRECISION array, dimension (N)
                     96: *          The first M elements contain the selected eigenvalues in
                     97: *          ascending order.
                     98: *
                     99: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M) )
                    100: *          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
                    101: *          contain the orthonormal eigenvectors of the matrix T
                    102: *          corresponding to the selected eigenvalues, with the i-th
                    103: *          column of Z holding the eigenvector associated with W(i).
                    104: *          If JOBZ = 'N', then Z is not referenced.
                    105: *          Note: the user must ensure that at least max(1,M) columns are
                    106: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    107: *          is not known in advance and an upper bound must be used.
                    108: *          Supplying N columns is always safe.
                    109: *
                    110: *  LDZ     (input) INTEGER
                    111: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    112: *          JOBZ = 'V', then LDZ >= max(1,N).
                    113: *
                    114: *  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
                    115: *          The support of the eigenvectors in Z, i.e., the indices
                    116: *          indicating the nonzero elements in Z. The i-th computed eigenvector
                    117: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
                    118: *          ISUPPZ( 2*i ). This is relevant in the case when the matrix
                    119: *          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
                    120: *
                    121: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
                    122: *          On exit, if INFO = 0, WORK(1) returns the optimal
                    123: *          (and minimal) LWORK.
                    124: *
                    125: *  LWORK   (input) INTEGER
                    126: *          The dimension of the array WORK. LWORK >= max(1,18*N)
                    127: *          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
                    128: *          If LWORK = -1, then a workspace query is assumed; the routine
                    129: *          only calculates the optimal size of the WORK array, returns
                    130: *          this value as the first entry of the WORK array, and no error
                    131: *          message related to LWORK is issued by XERBLA.
                    132: *
                    133: *  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
                    134: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    135: *
                    136: *  LIWORK  (input) INTEGER
                    137: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
                    138: *          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
                    139: *          if only the eigenvalues are to be computed.
                    140: *          If LIWORK = -1, then a workspace query is assumed; the
                    141: *          routine only calculates the optimal size of the IWORK array,
                    142: *          returns this value as the first entry of the IWORK array, and
                    143: *          no error message related to LIWORK is issued by XERBLA.
                    144: *
                    145: *  INFO    (output) INTEGER
                    146: *          On exit, INFO
                    147: *          = 0:  successful exit
                    148: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    149: *          > 0:  if INFO = 1X, internal error in DLARRE,
                    150: *                if INFO = 2X, internal error in ZLARRV.
                    151: *                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
                    152: *                the nonzero error code returned by DLARRE or
                    153: *                ZLARRV, respectively.
                    154: *
                    155: *  Further Details
                    156: *  ===============
                    157: *
                    158: *  Based on contributions by
                    159: *     Inderjit Dhillon, IBM Almaden, USA
                    160: *     Osni Marques, LBNL/NERSC, USA
                    161: *     Christof Voemel, LBNL/NERSC, USA
                    162: *
                    163: *  =====================================================================
                    164: *
                    165: *     .. Local Scalars ..
                    166:       LOGICAL TRYRAC
                    167: *     ..
                    168: *     .. External Subroutines ..
                    169:       EXTERNAL ZSTEMR
                    170: *     ..
                    171: *     .. Executable Statements ..
                    172:       INFO = 0
                    173:       TRYRAC = .FALSE.
                    174: 
                    175:       CALL ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
                    176:      $                   M, W, Z, LDZ, N, ISUPPZ, TRYRAC, WORK, LWORK,
                    177:      $                   IWORK, LIWORK, INFO )
                    178: *
                    179: *     End of ZSTEGR
                    180: *
                    181:       END

CVSweb interface <joel.bertrand@systella.fr>