Annotation of rpl/lapack/lapack/zstegr.f, revision 1.19

1.8       bertrand    1: *> \brief \b ZSTEGR
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZSTEGR + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zstegr.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zstegr.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zstegr.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
                     22: *                  ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
                     23: *                  LIWORK, INFO )
1.15      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBZ, RANGE
                     27: *       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
                     28: *       DOUBLE PRECISION ABSTOL, VL, VU
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            ISUPPZ( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
                     33: *       COMPLEX*16         Z( LDZ, * )
                     34: *       ..
1.15      bertrand   35: *
1.8       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> ZSTEGR computes selected eigenvalues and, optionally, eigenvectors
                     43: *> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
                     44: *> a well defined set of pairwise different real eigenvalues, the corresponding
                     45: *> real eigenvectors are pairwise orthogonal.
                     46: *>
                     47: *> The spectrum may be computed either completely or partially by specifying
                     48: *> either an interval (VL,VU] or a range of indices IL:IU for the desired
                     49: *> eigenvalues.
                     50: *>
1.13      bertrand   51: *> ZSTEGR is a compatibility wrapper around the improved ZSTEMR routine.
1.19    ! bertrand   52: *> See ZSTEMR for further details.
1.8       bertrand   53: *>
                     54: *> One important change is that the ABSTOL parameter no longer provides any
                     55: *> benefit and hence is no longer used.
                     56: *>
                     57: *> Note : ZSTEGR and ZSTEMR work only on machines which follow
                     58: *> IEEE-754 floating-point standard in their handling of infinities and
                     59: *> NaNs.  Normal execution may create these exceptiona values and hence
                     60: *> may abort due to a floating point exception in environments which
                     61: *> do not conform to the IEEE-754 standard.
                     62: *> \endverbatim
                     63: *
                     64: *  Arguments:
                     65: *  ==========
                     66: *
                     67: *> \param[in] JOBZ
                     68: *> \verbatim
                     69: *>          JOBZ is CHARACTER*1
                     70: *>          = 'N':  Compute eigenvalues only;
                     71: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] RANGE
                     75: *> \verbatim
                     76: *>          RANGE is CHARACTER*1
                     77: *>          = 'A': all eigenvalues will be found.
                     78: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     79: *>                 will be found.
                     80: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] N
                     84: *> \verbatim
                     85: *>          N is INTEGER
                     86: *>          The order of the matrix.  N >= 0.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] D
                     90: *> \verbatim
                     91: *>          D is DOUBLE PRECISION array, dimension (N)
                     92: *>          On entry, the N diagonal elements of the tridiagonal matrix
                     93: *>          T. On exit, D is overwritten.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in,out] E
                     97: *> \verbatim
                     98: *>          E is DOUBLE PRECISION array, dimension (N)
                     99: *>          On entry, the (N-1) subdiagonal elements of the tridiagonal
                    100: *>          matrix T in elements 1 to N-1 of E. E(N) need not be set on
                    101: *>          input, but is used internally as workspace.
                    102: *>          On exit, E is overwritten.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] VL
                    106: *> \verbatim
                    107: *>          VL is DOUBLE PRECISION
1.13      bertrand  108: *>
                    109: *>          If RANGE='V', the lower bound of the interval to
                    110: *>          be searched for eigenvalues. VL < VU.
                    111: *>          Not referenced if RANGE = 'A' or 'I'.
1.8       bertrand  112: *> \endverbatim
                    113: *>
                    114: *> \param[in] VU
                    115: *> \verbatim
                    116: *>          VU is DOUBLE PRECISION
                    117: *>
1.13      bertrand  118: *>          If RANGE='V', the upper bound of the interval to
1.8       bertrand  119: *>          be searched for eigenvalues. VL < VU.
                    120: *>          Not referenced if RANGE = 'A' or 'I'.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] IL
                    124: *> \verbatim
                    125: *>          IL is INTEGER
1.13      bertrand  126: *>
                    127: *>          If RANGE='I', the index of the
                    128: *>          smallest eigenvalue to be returned.
                    129: *>          1 <= IL <= IU <= N, if N > 0.
                    130: *>          Not referenced if RANGE = 'A' or 'V'.
1.8       bertrand  131: *> \endverbatim
                    132: *>
                    133: *> \param[in] IU
                    134: *> \verbatim
                    135: *>          IU is INTEGER
                    136: *>
1.13      bertrand  137: *>          If RANGE='I', the index of the
                    138: *>          largest eigenvalue to be returned.
1.8       bertrand  139: *>          1 <= IL <= IU <= N, if N > 0.
                    140: *>          Not referenced if RANGE = 'A' or 'V'.
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[in] ABSTOL
                    144: *> \verbatim
                    145: *>          ABSTOL is DOUBLE PRECISION
                    146: *>          Unused.  Was the absolute error tolerance for the
                    147: *>          eigenvalues/eigenvectors in previous versions.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] M
                    151: *> \verbatim
                    152: *>          M is INTEGER
                    153: *>          The total number of eigenvalues found.  0 <= M <= N.
                    154: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[out] W
                    158: *> \verbatim
                    159: *>          W is DOUBLE PRECISION array, dimension (N)
                    160: *>          The first M elements contain the selected eigenvalues in
                    161: *>          ascending order.
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] Z
                    165: *> \verbatim
                    166: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M) )
                    167: *>          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
                    168: *>          contain the orthonormal eigenvectors of the matrix T
                    169: *>          corresponding to the selected eigenvalues, with the i-th
                    170: *>          column of Z holding the eigenvector associated with W(i).
                    171: *>          If JOBZ = 'N', then Z is not referenced.
                    172: *>          Note: the user must ensure that at least max(1,M) columns are
                    173: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    174: *>          is not known in advance and an upper bound must be used.
                    175: *>          Supplying N columns is always safe.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in] LDZ
                    179: *> \verbatim
                    180: *>          LDZ is INTEGER
                    181: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    182: *>          JOBZ = 'V', then LDZ >= max(1,N).
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[out] ISUPPZ
                    186: *> \verbatim
1.17      bertrand  187: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
1.8       bertrand  188: *>          The support of the eigenvectors in Z, i.e., the indices
                    189: *>          indicating the nonzero elements in Z. The i-th computed eigenvector
                    190: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
                    191: *>          ISUPPZ( 2*i ). This is relevant in the case when the matrix
                    192: *>          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
                    193: *> \endverbatim
                    194: *>
                    195: *> \param[out] WORK
                    196: *> \verbatim
                    197: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
                    198: *>          On exit, if INFO = 0, WORK(1) returns the optimal
                    199: *>          (and minimal) LWORK.
                    200: *> \endverbatim
                    201: *>
                    202: *> \param[in] LWORK
                    203: *> \verbatim
                    204: *>          LWORK is INTEGER
                    205: *>          The dimension of the array WORK. LWORK >= max(1,18*N)
                    206: *>          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
                    207: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    208: *>          only calculates the optimal size of the WORK array, returns
                    209: *>          this value as the first entry of the WORK array, and no error
                    210: *>          message related to LWORK is issued by XERBLA.
                    211: *> \endverbatim
                    212: *>
                    213: *> \param[out] IWORK
                    214: *> \verbatim
                    215: *>          IWORK is INTEGER array, dimension (LIWORK)
                    216: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[in] LIWORK
                    220: *> \verbatim
                    221: *>          LIWORK is INTEGER
                    222: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
                    223: *>          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
                    224: *>          if only the eigenvalues are to be computed.
                    225: *>          If LIWORK = -1, then a workspace query is assumed; the
                    226: *>          routine only calculates the optimal size of the IWORK array,
                    227: *>          returns this value as the first entry of the IWORK array, and
                    228: *>          no error message related to LIWORK is issued by XERBLA.
                    229: *> \endverbatim
                    230: *>
                    231: *> \param[out] INFO
                    232: *> \verbatim
                    233: *>          INFO is INTEGER
                    234: *>          On exit, INFO
                    235: *>          = 0:  successful exit
                    236: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    237: *>          > 0:  if INFO = 1X, internal error in DLARRE,
                    238: *>                if INFO = 2X, internal error in ZLARRV.
                    239: *>                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
                    240: *>                the nonzero error code returned by DLARRE or
                    241: *>                ZLARRV, respectively.
                    242: *> \endverbatim
                    243: *
                    244: *  Authors:
                    245: *  ========
                    246: *
1.15      bertrand  247: *> \author Univ. of Tennessee
                    248: *> \author Univ. of California Berkeley
                    249: *> \author Univ. of Colorado Denver
                    250: *> \author NAG Ltd.
1.8       bertrand  251: *
                    252: *> \ingroup complex16OTHERcomputational
                    253: *
                    254: *> \par Contributors:
                    255: *  ==================
                    256: *>
                    257: *> Inderjit Dhillon, IBM Almaden, USA \n
                    258: *> Osni Marques, LBNL/NERSC, USA \n
                    259: *> Christof Voemel, LBNL/NERSC, USA \n
                    260: *
                    261: *  =====================================================================
1.1       bertrand  262:       SUBROUTINE ZSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
                    263:      $           ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
                    264:      $           LIWORK, INFO )
                    265: *
1.19    ! bertrand  266: *  -- LAPACK computational routine --
1.1       bertrand  267: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    268: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    269: *
                    270: *     .. Scalar Arguments ..
                    271:       CHARACTER          JOBZ, RANGE
                    272:       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
                    273:       DOUBLE PRECISION ABSTOL, VL, VU
                    274: *     ..
                    275: *     .. Array Arguments ..
                    276:       INTEGER            ISUPPZ( * ), IWORK( * )
                    277:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
                    278:       COMPLEX*16         Z( LDZ, * )
                    279: *     ..
                    280: *
                    281: *  =====================================================================
                    282: *
                    283: *     .. Local Scalars ..
                    284:       LOGICAL TRYRAC
                    285: *     ..
                    286: *     .. External Subroutines ..
                    287:       EXTERNAL ZSTEMR
                    288: *     ..
                    289: *     .. Executable Statements ..
                    290:       INFO = 0
                    291:       TRYRAC = .FALSE.
                    292: 
                    293:       CALL ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
                    294:      $                   M, W, Z, LDZ, N, ISUPPZ, TRYRAC, WORK, LWORK,
                    295:      $                   IWORK, LIWORK, INFO )
                    296: *
                    297: *     End of ZSTEGR
                    298: *
                    299:       END

CVSweb interface <joel.bertrand@systella.fr>