Annotation of rpl/lapack/lapack/zstegr.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
        !             2:      $           ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
        !             3:      $           LIWORK, INFO )
        !             4: 
        !             5:       IMPLICIT NONE
        !             6: *
        !             7: *
        !             8: *  -- LAPACK computational routine (version 3.2) --
        !             9: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !            10: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !            11: *     November 2006
        !            12: *
        !            13: *     .. Scalar Arguments ..
        !            14:       CHARACTER          JOBZ, RANGE
        !            15:       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
        !            16:       DOUBLE PRECISION ABSTOL, VL, VU
        !            17: *     ..
        !            18: *     .. Array Arguments ..
        !            19:       INTEGER            ISUPPZ( * ), IWORK( * )
        !            20:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
        !            21:       COMPLEX*16         Z( LDZ, * )
        !            22: *     ..
        !            23: *
        !            24: *  Purpose
        !            25: *  =======
        !            26: *
        !            27: *  ZSTEGR computes selected eigenvalues and, optionally, eigenvectors
        !            28: *  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
        !            29: *  a well defined set of pairwise different real eigenvalues, the corresponding
        !            30: *  real eigenvectors are pairwise orthogonal.
        !            31: *
        !            32: *  The spectrum may be computed either completely or partially by specifying
        !            33: *  either an interval (VL,VU] or a range of indices IL:IU for the desired
        !            34: *  eigenvalues.
        !            35: *
        !            36: *  ZSTEGR is a compatability wrapper around the improved ZSTEMR routine.
        !            37: *  See DSTEMR for further details.
        !            38: *
        !            39: *  One important change is that the ABSTOL parameter no longer provides any
        !            40: *  benefit and hence is no longer used.
        !            41: *
        !            42: *  Note : ZSTEGR and ZSTEMR work only on machines which follow
        !            43: *  IEEE-754 floating-point standard in their handling of infinities and
        !            44: *  NaNs.  Normal execution may create these exceptiona values and hence
        !            45: *  may abort due to a floating point exception in environments which
        !            46: *  do not conform to the IEEE-754 standard.
        !            47: *
        !            48: *  Arguments
        !            49: *  =========
        !            50: *
        !            51: *  JOBZ    (input) CHARACTER*1
        !            52: *          = 'N':  Compute eigenvalues only;
        !            53: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            54: *
        !            55: *  RANGE   (input) CHARACTER*1
        !            56: *          = 'A': all eigenvalues will be found.
        !            57: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !            58: *                 will be found.
        !            59: *          = 'I': the IL-th through IU-th eigenvalues will be found.
        !            60: *
        !            61: *  N       (input) INTEGER
        !            62: *          The order of the matrix.  N >= 0.
        !            63: *
        !            64: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
        !            65: *          On entry, the N diagonal elements of the tridiagonal matrix
        !            66: *          T. On exit, D is overwritten.
        !            67: *
        !            68: *  E       (input/output) DOUBLE PRECISION array, dimension (N)
        !            69: *          On entry, the (N-1) subdiagonal elements of the tridiagonal
        !            70: *          matrix T in elements 1 to N-1 of E. E(N) need not be set on
        !            71: *          input, but is used internally as workspace.
        !            72: *          On exit, E is overwritten.
        !            73: *
        !            74: *  VL      (input) DOUBLE PRECISION
        !            75: *  VU      (input) DOUBLE PRECISION
        !            76: *          If RANGE='V', the lower and upper bounds of the interval to
        !            77: *          be searched for eigenvalues. VL < VU.
        !            78: *          Not referenced if RANGE = 'A' or 'I'.
        !            79: *
        !            80: *  IL      (input) INTEGER
        !            81: *  IU      (input) INTEGER
        !            82: *          If RANGE='I', the indices (in ascending order) of the
        !            83: *          smallest and largest eigenvalues to be returned.
        !            84: *          1 <= IL <= IU <= N, if N > 0.
        !            85: *          Not referenced if RANGE = 'A' or 'V'.
        !            86: *
        !            87: *  ABSTOL  (input) DOUBLE PRECISION
        !            88: *          Unused.  Was the absolute error tolerance for the
        !            89: *          eigenvalues/eigenvectors in previous versions.
        !            90: *
        !            91: *  M       (output) INTEGER
        !            92: *          The total number of eigenvalues found.  0 <= M <= N.
        !            93: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !            94: *
        !            95: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !            96: *          The first M elements contain the selected eigenvalues in
        !            97: *          ascending order.
        !            98: *
        !            99: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M) )
        !           100: *          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
        !           101: *          contain the orthonormal eigenvectors of the matrix T
        !           102: *          corresponding to the selected eigenvalues, with the i-th
        !           103: *          column of Z holding the eigenvector associated with W(i).
        !           104: *          If JOBZ = 'N', then Z is not referenced.
        !           105: *          Note: the user must ensure that at least max(1,M) columns are
        !           106: *          supplied in the array Z; if RANGE = 'V', the exact value of M
        !           107: *          is not known in advance and an upper bound must be used.
        !           108: *          Supplying N columns is always safe.
        !           109: *
        !           110: *  LDZ     (input) INTEGER
        !           111: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !           112: *          JOBZ = 'V', then LDZ >= max(1,N).
        !           113: *
        !           114: *  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
        !           115: *          The support of the eigenvectors in Z, i.e., the indices
        !           116: *          indicating the nonzero elements in Z. The i-th computed eigenvector
        !           117: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
        !           118: *          ISUPPZ( 2*i ). This is relevant in the case when the matrix
        !           119: *          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
        !           120: *
        !           121: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
        !           122: *          On exit, if INFO = 0, WORK(1) returns the optimal
        !           123: *          (and minimal) LWORK.
        !           124: *
        !           125: *  LWORK   (input) INTEGER
        !           126: *          The dimension of the array WORK. LWORK >= max(1,18*N)
        !           127: *          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
        !           128: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           129: *          only calculates the optimal size of the WORK array, returns
        !           130: *          this value as the first entry of the WORK array, and no error
        !           131: *          message related to LWORK is issued by XERBLA.
        !           132: *
        !           133: *  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
        !           134: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           135: *
        !           136: *  LIWORK  (input) INTEGER
        !           137: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
        !           138: *          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
        !           139: *          if only the eigenvalues are to be computed.
        !           140: *          If LIWORK = -1, then a workspace query is assumed; the
        !           141: *          routine only calculates the optimal size of the IWORK array,
        !           142: *          returns this value as the first entry of the IWORK array, and
        !           143: *          no error message related to LIWORK is issued by XERBLA.
        !           144: *
        !           145: *  INFO    (output) INTEGER
        !           146: *          On exit, INFO
        !           147: *          = 0:  successful exit
        !           148: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           149: *          > 0:  if INFO = 1X, internal error in DLARRE,
        !           150: *                if INFO = 2X, internal error in ZLARRV.
        !           151: *                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
        !           152: *                the nonzero error code returned by DLARRE or
        !           153: *                ZLARRV, respectively.
        !           154: *
        !           155: *  Further Details
        !           156: *  ===============
        !           157: *
        !           158: *  Based on contributions by
        !           159: *     Inderjit Dhillon, IBM Almaden, USA
        !           160: *     Osni Marques, LBNL/NERSC, USA
        !           161: *     Christof Voemel, LBNL/NERSC, USA
        !           162: *
        !           163: *  =====================================================================
        !           164: *
        !           165: *     .. Local Scalars ..
        !           166:       LOGICAL TRYRAC
        !           167: *     ..
        !           168: *     .. External Subroutines ..
        !           169:       EXTERNAL ZSTEMR
        !           170: *     ..
        !           171: *     .. Executable Statements ..
        !           172:       INFO = 0
        !           173:       TRYRAC = .FALSE.
        !           174: 
        !           175:       CALL ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
        !           176:      $                   M, W, Z, LDZ, N, ISUPPZ, TRYRAC, WORK, LWORK,
        !           177:      $                   IWORK, LIWORK, INFO )
        !           178: *
        !           179: *     End of ZSTEGR
        !           180: *
        !           181:       END

CVSweb interface <joel.bertrand@systella.fr>