Annotation of rpl/lapack/lapack/zstedc.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b ZSTEDC
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZSTEDC + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zstedc.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zstedc.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zstedc.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
        !            22: *                          LRWORK, IWORK, LIWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          COMPZ
        !            26: *       INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IWORK( * )
        !            30: *       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
        !            31: *       COMPLEX*16         WORK( * ), Z( LDZ, * )
        !            32: *       ..
        !            33: *  
        !            34: *
        !            35: *> \par Purpose:
        !            36: *  =============
        !            37: *>
        !            38: *> \verbatim
        !            39: *>
        !            40: *> ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a
        !            41: *> symmetric tridiagonal matrix using the divide and conquer method.
        !            42: *> The eigenvectors of a full or band complex Hermitian matrix can also
        !            43: *> be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this
        !            44: *> matrix to tridiagonal form.
        !            45: *>
        !            46: *> This code makes very mild assumptions about floating point
        !            47: *> arithmetic. It will work on machines with a guard digit in
        !            48: *> add/subtract, or on those binary machines without guard digits
        !            49: *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
        !            50: *> It could conceivably fail on hexadecimal or decimal machines
        !            51: *> without guard digits, but we know of none.  See DLAED3 for details.
        !            52: *> \endverbatim
        !            53: *
        !            54: *  Arguments:
        !            55: *  ==========
        !            56: *
        !            57: *> \param[in] COMPZ
        !            58: *> \verbatim
        !            59: *>          COMPZ is CHARACTER*1
        !            60: *>          = 'N':  Compute eigenvalues only.
        !            61: *>          = 'I':  Compute eigenvectors of tridiagonal matrix also.
        !            62: *>          = 'V':  Compute eigenvectors of original Hermitian matrix
        !            63: *>                  also.  On entry, Z contains the unitary matrix used
        !            64: *>                  to reduce the original matrix to tridiagonal form.
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in] N
        !            68: *> \verbatim
        !            69: *>          N is INTEGER
        !            70: *>          The dimension of the symmetric tridiagonal matrix.  N >= 0.
        !            71: *> \endverbatim
        !            72: *>
        !            73: *> \param[in,out] D
        !            74: *> \verbatim
        !            75: *>          D is DOUBLE PRECISION array, dimension (N)
        !            76: *>          On entry, the diagonal elements of the tridiagonal matrix.
        !            77: *>          On exit, if INFO = 0, the eigenvalues in ascending order.
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in,out] E
        !            81: *> \verbatim
        !            82: *>          E is DOUBLE PRECISION array, dimension (N-1)
        !            83: *>          On entry, the subdiagonal elements of the tridiagonal matrix.
        !            84: *>          On exit, E has been destroyed.
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[in,out] Z
        !            88: *> \verbatim
        !            89: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
        !            90: *>          On entry, if COMPZ = 'V', then Z contains the unitary
        !            91: *>          matrix used in the reduction to tridiagonal form.
        !            92: *>          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
        !            93: *>          orthonormal eigenvectors of the original Hermitian matrix,
        !            94: *>          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
        !            95: *>          of the symmetric tridiagonal matrix.
        !            96: *>          If  COMPZ = 'N', then Z is not referenced.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in] LDZ
        !           100: *> \verbatim
        !           101: *>          LDZ is INTEGER
        !           102: *>          The leading dimension of the array Z.  LDZ >= 1.
        !           103: *>          If eigenvectors are desired, then LDZ >= max(1,N).
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[out] WORK
        !           107: *> \verbatim
        !           108: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           109: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[in] LWORK
        !           113: *> \verbatim
        !           114: *>          LWORK is INTEGER
        !           115: *>          The dimension of the array WORK.
        !           116: *>          If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1.
        !           117: *>          If COMPZ = 'V' and N > 1, LWORK must be at least N*N.
        !           118: *>          Note that for COMPZ = 'V', then if N is less than or
        !           119: *>          equal to the minimum divide size, usually 25, then LWORK need
        !           120: *>          only be 1.
        !           121: *>
        !           122: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           123: *>          only calculates the optimal sizes of the WORK, RWORK and
        !           124: *>          IWORK arrays, returns these values as the first entries of
        !           125: *>          the WORK, RWORK and IWORK arrays, and no error message
        !           126: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           127: *> \endverbatim
        !           128: *>
        !           129: *> \param[out] RWORK
        !           130: *> \verbatim
        !           131: *>          RWORK is DOUBLE PRECISION array,
        !           132: *>                                         dimension (LRWORK)
        !           133: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in] LRWORK
        !           137: *> \verbatim
        !           138: *>          LRWORK is INTEGER
        !           139: *>          The dimension of the array RWORK.
        !           140: *>          If COMPZ = 'N' or N <= 1, LRWORK must be at least 1.
        !           141: *>          If COMPZ = 'V' and N > 1, LRWORK must be at least
        !           142: *>                         1 + 3*N + 2*N*lg N + 4*N**2 ,
        !           143: *>                         where lg( N ) = smallest integer k such
        !           144: *>                         that 2**k >= N.
        !           145: *>          If COMPZ = 'I' and N > 1, LRWORK must be at least
        !           146: *>                         1 + 4*N + 2*N**2 .
        !           147: *>          Note that for COMPZ = 'I' or 'V', then if N is less than or
        !           148: *>          equal to the minimum divide size, usually 25, then LRWORK
        !           149: *>          need only be max(1,2*(N-1)).
        !           150: *>
        !           151: *>          If LRWORK = -1, then a workspace query is assumed; the
        !           152: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           153: *>          and IWORK arrays, returns these values as the first entries
        !           154: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           155: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[out] IWORK
        !           159: *> \verbatim
        !           160: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           161: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           162: *> \endverbatim
        !           163: *>
        !           164: *> \param[in] LIWORK
        !           165: *> \verbatim
        !           166: *>          LIWORK is INTEGER
        !           167: *>          The dimension of the array IWORK.
        !           168: *>          If COMPZ = 'N' or N <= 1, LIWORK must be at least 1.
        !           169: *>          If COMPZ = 'V' or N > 1,  LIWORK must be at least
        !           170: *>                                    6 + 6*N + 5*N*lg N.
        !           171: *>          If COMPZ = 'I' or N > 1,  LIWORK must be at least
        !           172: *>                                    3 + 5*N .
        !           173: *>          Note that for COMPZ = 'I' or 'V', then if N is less than or
        !           174: *>          equal to the minimum divide size, usually 25, then LIWORK
        !           175: *>          need only be 1.
        !           176: *>
        !           177: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           178: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           179: *>          and IWORK arrays, returns these values as the first entries
        !           180: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           181: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           182: *> \endverbatim
        !           183: *>
        !           184: *> \param[out] INFO
        !           185: *> \verbatim
        !           186: *>          INFO is INTEGER
        !           187: *>          = 0:  successful exit.
        !           188: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           189: *>          > 0:  The algorithm failed to compute an eigenvalue while
        !           190: *>                working on the submatrix lying in rows and columns
        !           191: *>                INFO/(N+1) through mod(INFO,N+1).
        !           192: *> \endverbatim
        !           193: *
        !           194: *  Authors:
        !           195: *  ========
        !           196: *
        !           197: *> \author Univ. of Tennessee 
        !           198: *> \author Univ. of California Berkeley 
        !           199: *> \author Univ. of Colorado Denver 
        !           200: *> \author NAG Ltd. 
        !           201: *
        !           202: *> \date November 2011
        !           203: *
        !           204: *> \ingroup complex16OTHERcomputational
        !           205: *
        !           206: *> \par Contributors:
        !           207: *  ==================
        !           208: *>
        !           209: *> Jeff Rutter, Computer Science Division, University of California
        !           210: *> at Berkeley, USA
        !           211: *
        !           212: *  =====================================================================
1.1       bertrand  213:       SUBROUTINE ZSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
                    214:      $                   LRWORK, IWORK, LIWORK, INFO )
                    215: *
1.8     ! bertrand  216: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  217: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    218: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  219: *     November 2011
1.1       bertrand  220: *
                    221: *     .. Scalar Arguments ..
                    222:       CHARACTER          COMPZ
                    223:       INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
                    224: *     ..
                    225: *     .. Array Arguments ..
                    226:       INTEGER            IWORK( * )
                    227:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
                    228:       COMPLEX*16         WORK( * ), Z( LDZ, * )
                    229: *     ..
                    230: *
                    231: *  =====================================================================
                    232: *
                    233: *     .. Parameters ..
                    234:       DOUBLE PRECISION   ZERO, ONE, TWO
                    235:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
                    236: *     ..
                    237: *     .. Local Scalars ..
                    238:       LOGICAL            LQUERY
                    239:       INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN, LL,
                    240:      $                   LRWMIN, LWMIN, M, SMLSIZ, START
                    241:       DOUBLE PRECISION   EPS, ORGNRM, P, TINY
                    242: *     ..
                    243: *     .. External Functions ..
                    244:       LOGICAL            LSAME
                    245:       INTEGER            ILAENV
                    246:       DOUBLE PRECISION   DLAMCH, DLANST
                    247:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
                    248: *     ..
                    249: *     .. External Subroutines ..
                    250:       EXTERNAL           DLASCL, DLASET, DSTEDC, DSTEQR, DSTERF, XERBLA,
                    251:      $                   ZLACPY, ZLACRM, ZLAED0, ZSTEQR, ZSWAP
                    252: *     ..
                    253: *     .. Intrinsic Functions ..
                    254:       INTRINSIC          ABS, DBLE, INT, LOG, MAX, MOD, SQRT
                    255: *     ..
                    256: *     .. Executable Statements ..
                    257: *
                    258: *     Test the input parameters.
                    259: *
                    260:       INFO = 0
                    261:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    262: *
                    263:       IF( LSAME( COMPZ, 'N' ) ) THEN
                    264:          ICOMPZ = 0
                    265:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
                    266:          ICOMPZ = 1
                    267:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
                    268:          ICOMPZ = 2
                    269:       ELSE
                    270:          ICOMPZ = -1
                    271:       END IF
                    272:       IF( ICOMPZ.LT.0 ) THEN
                    273:          INFO = -1
                    274:       ELSE IF( N.LT.0 ) THEN
                    275:          INFO = -2
                    276:       ELSE IF( ( LDZ.LT.1 ) .OR.
                    277:      $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
                    278:          INFO = -6
                    279:       END IF
                    280: *
                    281:       IF( INFO.EQ.0 ) THEN
                    282: *
                    283: *        Compute the workspace requirements
                    284: *
                    285:          SMLSIZ = ILAENV( 9, 'ZSTEDC', ' ', 0, 0, 0, 0 )
                    286:          IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
                    287:             LWMIN = 1
                    288:             LIWMIN = 1
                    289:             LRWMIN = 1
                    290:          ELSE IF( N.LE.SMLSIZ ) THEN
                    291:             LWMIN = 1
                    292:             LIWMIN = 1
                    293:             LRWMIN = 2*( N - 1 )
                    294:          ELSE IF( ICOMPZ.EQ.1 ) THEN
                    295:             LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) )
                    296:             IF( 2**LGN.LT.N )
                    297:      $         LGN = LGN + 1
                    298:             IF( 2**LGN.LT.N )
                    299:      $         LGN = LGN + 1
                    300:             LWMIN = N*N
1.8     ! bertrand  301:             LRWMIN = 1 + 3*N + 2*N*LGN + 4*N**2
1.1       bertrand  302:             LIWMIN = 6 + 6*N + 5*N*LGN
                    303:          ELSE IF( ICOMPZ.EQ.2 ) THEN
                    304:             LWMIN = 1
                    305:             LRWMIN = 1 + 4*N + 2*N**2
                    306:             LIWMIN = 3 + 5*N
                    307:          END IF
                    308:          WORK( 1 ) = LWMIN
                    309:          RWORK( 1 ) = LRWMIN
                    310:          IWORK( 1 ) = LIWMIN
                    311: *
                    312:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    313:             INFO = -8
                    314:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
                    315:             INFO = -10
                    316:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    317:             INFO = -12
                    318:          END IF
                    319:       END IF
                    320: *
                    321:       IF( INFO.NE.0 ) THEN
                    322:          CALL XERBLA( 'ZSTEDC', -INFO )
                    323:          RETURN
                    324:       ELSE IF( LQUERY ) THEN
                    325:          RETURN
                    326:       END IF
                    327: *
                    328: *     Quick return if possible
                    329: *
                    330:       IF( N.EQ.0 )
                    331:      $   RETURN
                    332:       IF( N.EQ.1 ) THEN
                    333:          IF( ICOMPZ.NE.0 )
                    334:      $      Z( 1, 1 ) = ONE
                    335:          RETURN
                    336:       END IF
                    337: *
                    338: *     If the following conditional clause is removed, then the routine
                    339: *     will use the Divide and Conquer routine to compute only the
                    340: *     eigenvalues, which requires (3N + 3N**2) real workspace and
                    341: *     (2 + 5N + 2N lg(N)) integer workspace.
                    342: *     Since on many architectures DSTERF is much faster than any other
                    343: *     algorithm for finding eigenvalues only, it is used here
                    344: *     as the default. If the conditional clause is removed, then
                    345: *     information on the size of workspace needs to be changed.
                    346: *
                    347: *     If COMPZ = 'N', use DSTERF to compute the eigenvalues.
                    348: *
                    349:       IF( ICOMPZ.EQ.0 ) THEN
                    350:          CALL DSTERF( N, D, E, INFO )
                    351:          GO TO 70
                    352:       END IF
                    353: *
                    354: *     If N is smaller than the minimum divide size (SMLSIZ+1), then
                    355: *     solve the problem with another solver.
                    356: *
                    357:       IF( N.LE.SMLSIZ ) THEN
                    358: *
                    359:          CALL ZSTEQR( COMPZ, N, D, E, Z, LDZ, RWORK, INFO )
                    360: *
                    361:       ELSE
                    362: *
                    363: *        If COMPZ = 'I', we simply call DSTEDC instead.
                    364: *
                    365:          IF( ICOMPZ.EQ.2 ) THEN
                    366:             CALL DLASET( 'Full', N, N, ZERO, ONE, RWORK, N )
                    367:             LL = N*N + 1
                    368:             CALL DSTEDC( 'I', N, D, E, RWORK, N,
                    369:      $                   RWORK( LL ), LRWORK-LL+1, IWORK, LIWORK, INFO )
                    370:             DO 20 J = 1, N
                    371:                DO 10 I = 1, N
                    372:                   Z( I, J ) = RWORK( ( J-1 )*N+I )
                    373:    10          CONTINUE
                    374:    20       CONTINUE
                    375:             GO TO 70
                    376:          END IF
                    377: *
                    378: *        From now on, only option left to be handled is COMPZ = 'V',
                    379: *        i.e. ICOMPZ = 1.
                    380: *
                    381: *        Scale.
                    382: *
                    383:          ORGNRM = DLANST( 'M', N, D, E )
                    384:          IF( ORGNRM.EQ.ZERO )
                    385:      $      GO TO 70
                    386: *
                    387:          EPS = DLAMCH( 'Epsilon' )
                    388: *
                    389:          START = 1
                    390: *
                    391: *        while ( START <= N )
                    392: *
                    393:    30    CONTINUE
                    394:          IF( START.LE.N ) THEN
                    395: *
                    396: *           Let FINISH be the position of the next subdiagonal entry
                    397: *           such that E( FINISH ) <= TINY or FINISH = N if no such
                    398: *           subdiagonal exists.  The matrix identified by the elements
                    399: *           between START and FINISH constitutes an independent
                    400: *           sub-problem.
                    401: *
                    402:             FINISH = START
                    403:    40       CONTINUE
                    404:             IF( FINISH.LT.N ) THEN
                    405:                TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
                    406:      $                    SQRT( ABS( D( FINISH+1 ) ) )
                    407:                IF( ABS( E( FINISH ) ).GT.TINY ) THEN
                    408:                   FINISH = FINISH + 1
                    409:                   GO TO 40
                    410:                END IF
                    411:             END IF
                    412: *
                    413: *           (Sub) Problem determined.  Compute its size and solve it.
                    414: *
                    415:             M = FINISH - START + 1
                    416:             IF( M.GT.SMLSIZ ) THEN
                    417: *
                    418: *              Scale.
                    419: *
                    420:                ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
                    421:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
                    422:      $                      INFO )
                    423:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
                    424:      $                      M-1, INFO )
                    425: *
                    426:                CALL ZLAED0( N, M, D( START ), E( START ), Z( 1, START ),
                    427:      $                      LDZ, WORK, N, RWORK, IWORK, INFO )
                    428:                IF( INFO.GT.0 ) THEN
                    429:                   INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
                    430:      $                   MOD( INFO, ( M+1 ) ) + START - 1
                    431:                   GO TO 70
                    432:                END IF
                    433: *
                    434: *              Scale back.
                    435: *
                    436:                CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
                    437:      $                      INFO )
                    438: *
                    439:             ELSE
                    440:                CALL DSTEQR( 'I', M, D( START ), E( START ), RWORK, M,
                    441:      $                      RWORK( M*M+1 ), INFO )
                    442:                CALL ZLACRM( N, M, Z( 1, START ), LDZ, RWORK, M, WORK, N,
                    443:      $                      RWORK( M*M+1 ) )
                    444:                CALL ZLACPY( 'A', N, M, WORK, N, Z( 1, START ), LDZ )
                    445:                IF( INFO.GT.0 ) THEN
                    446:                   INFO = START*( N+1 ) + FINISH
                    447:                   GO TO 70
                    448:                END IF
                    449:             END IF
                    450: *
                    451:             START = FINISH + 1
                    452:             GO TO 30
                    453:          END IF
                    454: *
                    455: *        endwhile
                    456: *
                    457: *        If the problem split any number of times, then the eigenvalues
                    458: *        will not be properly ordered.  Here we permute the eigenvalues
                    459: *        (and the associated eigenvectors) into ascending order.
                    460: *
                    461:          IF( M.NE.N ) THEN
                    462: *
                    463: *           Use Selection Sort to minimize swaps of eigenvectors
                    464: *
                    465:             DO 60 II = 2, N
                    466:                I = II - 1
                    467:                K = I
                    468:                P = D( I )
                    469:                DO 50 J = II, N
                    470:                   IF( D( J ).LT.P ) THEN
                    471:                      K = J
                    472:                      P = D( J )
                    473:                   END IF
                    474:    50          CONTINUE
                    475:                IF( K.NE.I ) THEN
                    476:                   D( K ) = D( I )
                    477:                   D( I ) = P
                    478:                   CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
                    479:                END IF
                    480:    60       CONTINUE
                    481:          END IF
                    482:       END IF
                    483: *
                    484:    70 CONTINUE
                    485:       WORK( 1 ) = LWMIN
                    486:       RWORK( 1 ) = LRWMIN
                    487:       IWORK( 1 ) = LIWMIN
                    488: *
                    489:       RETURN
                    490: *
                    491: *     End of ZSTEDC
                    492: *
                    493:       END

CVSweb interface <joel.bertrand@systella.fr>