Annotation of rpl/lapack/lapack/zstedc.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
        !             2:      $                   LRWORK, IWORK, LIWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          COMPZ
        !            11:       INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IWORK( * )
        !            15:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
        !            16:       COMPLEX*16         WORK( * ), Z( LDZ, * )
        !            17: *     ..
        !            18: *
        !            19: *  Purpose
        !            20: *  =======
        !            21: *
        !            22: *  ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a
        !            23: *  symmetric tridiagonal matrix using the divide and conquer method.
        !            24: *  The eigenvectors of a full or band complex Hermitian matrix can also
        !            25: *  be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this
        !            26: *  matrix to tridiagonal form.
        !            27: *
        !            28: *  This code makes very mild assumptions about floating point
        !            29: *  arithmetic. It will work on machines with a guard digit in
        !            30: *  add/subtract, or on those binary machines without guard digits
        !            31: *  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
        !            32: *  It could conceivably fail on hexadecimal or decimal machines
        !            33: *  without guard digits, but we know of none.  See DLAED3 for details.
        !            34: *
        !            35: *  Arguments
        !            36: *  =========
        !            37: *
        !            38: *  COMPZ   (input) CHARACTER*1
        !            39: *          = 'N':  Compute eigenvalues only.
        !            40: *          = 'I':  Compute eigenvectors of tridiagonal matrix also.
        !            41: *          = 'V':  Compute eigenvectors of original Hermitian matrix
        !            42: *                  also.  On entry, Z contains the unitary matrix used
        !            43: *                  to reduce the original matrix to tridiagonal form.
        !            44: *
        !            45: *  N       (input) INTEGER
        !            46: *          The dimension of the symmetric tridiagonal matrix.  N >= 0.
        !            47: *
        !            48: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
        !            49: *          On entry, the diagonal elements of the tridiagonal matrix.
        !            50: *          On exit, if INFO = 0, the eigenvalues in ascending order.
        !            51: *
        !            52: *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
        !            53: *          On entry, the subdiagonal elements of the tridiagonal matrix.
        !            54: *          On exit, E has been destroyed.
        !            55: *
        !            56: *  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
        !            57: *          On entry, if COMPZ = 'V', then Z contains the unitary
        !            58: *          matrix used in the reduction to tridiagonal form.
        !            59: *          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
        !            60: *          orthonormal eigenvectors of the original Hermitian matrix,
        !            61: *          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
        !            62: *          of the symmetric tridiagonal matrix.
        !            63: *          If  COMPZ = 'N', then Z is not referenced.
        !            64: *
        !            65: *  LDZ     (input) INTEGER
        !            66: *          The leading dimension of the array Z.  LDZ >= 1.
        !            67: *          If eigenvectors are desired, then LDZ >= max(1,N).
        !            68: *
        !            69: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !            70: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            71: *
        !            72: *  LWORK   (input) INTEGER
        !            73: *          The dimension of the array WORK.
        !            74: *          If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1.
        !            75: *          If COMPZ = 'V' and N > 1, LWORK must be at least N*N.
        !            76: *          Note that for COMPZ = 'V', then if N is less than or
        !            77: *          equal to the minimum divide size, usually 25, then LWORK need
        !            78: *          only be 1.
        !            79: *
        !            80: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            81: *          only calculates the optimal sizes of the WORK, RWORK and
        !            82: *          IWORK arrays, returns these values as the first entries of
        !            83: *          the WORK, RWORK and IWORK arrays, and no error message
        !            84: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !            85: *
        !            86: *  RWORK   (workspace/output) DOUBLE PRECISION array,
        !            87: *                                         dimension (LRWORK)
        !            88: *          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
        !            89: *
        !            90: *  LRWORK  (input) INTEGER
        !            91: *          The dimension of the array RWORK.
        !            92: *          If COMPZ = 'N' or N <= 1, LRWORK must be at least 1.
        !            93: *          If COMPZ = 'V' and N > 1, LRWORK must be at least
        !            94: *                         1 + 3*N + 2*N*lg N + 3*N**2 ,
        !            95: *                         where lg( N ) = smallest integer k such
        !            96: *                         that 2**k >= N.
        !            97: *          If COMPZ = 'I' and N > 1, LRWORK must be at least
        !            98: *                         1 + 4*N + 2*N**2 .
        !            99: *          Note that for COMPZ = 'I' or 'V', then if N is less than or
        !           100: *          equal to the minimum divide size, usually 25, then LRWORK
        !           101: *          need only be max(1,2*(N-1)).
        !           102: *
        !           103: *          If LRWORK = -1, then a workspace query is assumed; the
        !           104: *          routine only calculates the optimal sizes of the WORK, RWORK
        !           105: *          and IWORK arrays, returns these values as the first entries
        !           106: *          of the WORK, RWORK and IWORK arrays, and no error message
        !           107: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           108: *
        !           109: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !           110: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           111: *
        !           112: *  LIWORK  (input) INTEGER
        !           113: *          The dimension of the array IWORK.
        !           114: *          If COMPZ = 'N' or N <= 1, LIWORK must be at least 1.
        !           115: *          If COMPZ = 'V' or N > 1,  LIWORK must be at least
        !           116: *                                    6 + 6*N + 5*N*lg N.
        !           117: *          If COMPZ = 'I' or N > 1,  LIWORK must be at least
        !           118: *                                    3 + 5*N .
        !           119: *          Note that for COMPZ = 'I' or 'V', then if N is less than or
        !           120: *          equal to the minimum divide size, usually 25, then LIWORK
        !           121: *          need only be 1.
        !           122: *
        !           123: *          If LIWORK = -1, then a workspace query is assumed; the
        !           124: *          routine only calculates the optimal sizes of the WORK, RWORK
        !           125: *          and IWORK arrays, returns these values as the first entries
        !           126: *          of the WORK, RWORK and IWORK arrays, and no error message
        !           127: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           128: *
        !           129: *  INFO    (output) INTEGER
        !           130: *          = 0:  successful exit.
        !           131: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           132: *          > 0:  The algorithm failed to compute an eigenvalue while
        !           133: *                working on the submatrix lying in rows and columns
        !           134: *                INFO/(N+1) through mod(INFO,N+1).
        !           135: *
        !           136: *  Further Details
        !           137: *  ===============
        !           138: *
        !           139: *  Based on contributions by
        !           140: *     Jeff Rutter, Computer Science Division, University of California
        !           141: *     at Berkeley, USA
        !           142: *
        !           143: *  =====================================================================
        !           144: *
        !           145: *     .. Parameters ..
        !           146:       DOUBLE PRECISION   ZERO, ONE, TWO
        !           147:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
        !           148: *     ..
        !           149: *     .. Local Scalars ..
        !           150:       LOGICAL            LQUERY
        !           151:       INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN, LL,
        !           152:      $                   LRWMIN, LWMIN, M, SMLSIZ, START
        !           153:       DOUBLE PRECISION   EPS, ORGNRM, P, TINY
        !           154: *     ..
        !           155: *     .. External Functions ..
        !           156:       LOGICAL            LSAME
        !           157:       INTEGER            ILAENV
        !           158:       DOUBLE PRECISION   DLAMCH, DLANST
        !           159:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
        !           160: *     ..
        !           161: *     .. External Subroutines ..
        !           162:       EXTERNAL           DLASCL, DLASET, DSTEDC, DSTEQR, DSTERF, XERBLA,
        !           163:      $                   ZLACPY, ZLACRM, ZLAED0, ZSTEQR, ZSWAP
        !           164: *     ..
        !           165: *     .. Intrinsic Functions ..
        !           166:       INTRINSIC          ABS, DBLE, INT, LOG, MAX, MOD, SQRT
        !           167: *     ..
        !           168: *     .. Executable Statements ..
        !           169: *
        !           170: *     Test the input parameters.
        !           171: *
        !           172:       INFO = 0
        !           173:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           174: *
        !           175:       IF( LSAME( COMPZ, 'N' ) ) THEN
        !           176:          ICOMPZ = 0
        !           177:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
        !           178:          ICOMPZ = 1
        !           179:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
        !           180:          ICOMPZ = 2
        !           181:       ELSE
        !           182:          ICOMPZ = -1
        !           183:       END IF
        !           184:       IF( ICOMPZ.LT.0 ) THEN
        !           185:          INFO = -1
        !           186:       ELSE IF( N.LT.0 ) THEN
        !           187:          INFO = -2
        !           188:       ELSE IF( ( LDZ.LT.1 ) .OR.
        !           189:      $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
        !           190:          INFO = -6
        !           191:       END IF
        !           192: *
        !           193:       IF( INFO.EQ.0 ) THEN
        !           194: *
        !           195: *        Compute the workspace requirements
        !           196: *
        !           197:          SMLSIZ = ILAENV( 9, 'ZSTEDC', ' ', 0, 0, 0, 0 )
        !           198:          IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
        !           199:             LWMIN = 1
        !           200:             LIWMIN = 1
        !           201:             LRWMIN = 1
        !           202:          ELSE IF( N.LE.SMLSIZ ) THEN
        !           203:             LWMIN = 1
        !           204:             LIWMIN = 1
        !           205:             LRWMIN = 2*( N - 1 )
        !           206:          ELSE IF( ICOMPZ.EQ.1 ) THEN
        !           207:             LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) )
        !           208:             IF( 2**LGN.LT.N )
        !           209:      $         LGN = LGN + 1
        !           210:             IF( 2**LGN.LT.N )
        !           211:      $         LGN = LGN + 1
        !           212:             LWMIN = N*N
        !           213:             LRWMIN = 1 + 3*N + 2*N*LGN + 3*N**2
        !           214:             LIWMIN = 6 + 6*N + 5*N*LGN
        !           215:          ELSE IF( ICOMPZ.EQ.2 ) THEN
        !           216:             LWMIN = 1
        !           217:             LRWMIN = 1 + 4*N + 2*N**2
        !           218:             LIWMIN = 3 + 5*N
        !           219:          END IF
        !           220:          WORK( 1 ) = LWMIN
        !           221:          RWORK( 1 ) = LRWMIN
        !           222:          IWORK( 1 ) = LIWMIN
        !           223: *
        !           224:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           225:             INFO = -8
        !           226:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
        !           227:             INFO = -10
        !           228:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           229:             INFO = -12
        !           230:          END IF
        !           231:       END IF
        !           232: *
        !           233:       IF( INFO.NE.0 ) THEN
        !           234:          CALL XERBLA( 'ZSTEDC', -INFO )
        !           235:          RETURN
        !           236:       ELSE IF( LQUERY ) THEN
        !           237:          RETURN
        !           238:       END IF
        !           239: *
        !           240: *     Quick return if possible
        !           241: *
        !           242:       IF( N.EQ.0 )
        !           243:      $   RETURN
        !           244:       IF( N.EQ.1 ) THEN
        !           245:          IF( ICOMPZ.NE.0 )
        !           246:      $      Z( 1, 1 ) = ONE
        !           247:          RETURN
        !           248:       END IF
        !           249: *
        !           250: *     If the following conditional clause is removed, then the routine
        !           251: *     will use the Divide and Conquer routine to compute only the
        !           252: *     eigenvalues, which requires (3N + 3N**2) real workspace and
        !           253: *     (2 + 5N + 2N lg(N)) integer workspace.
        !           254: *     Since on many architectures DSTERF is much faster than any other
        !           255: *     algorithm for finding eigenvalues only, it is used here
        !           256: *     as the default. If the conditional clause is removed, then
        !           257: *     information on the size of workspace needs to be changed.
        !           258: *
        !           259: *     If COMPZ = 'N', use DSTERF to compute the eigenvalues.
        !           260: *
        !           261:       IF( ICOMPZ.EQ.0 ) THEN
        !           262:          CALL DSTERF( N, D, E, INFO )
        !           263:          GO TO 70
        !           264:       END IF
        !           265: *
        !           266: *     If N is smaller than the minimum divide size (SMLSIZ+1), then
        !           267: *     solve the problem with another solver.
        !           268: *
        !           269:       IF( N.LE.SMLSIZ ) THEN
        !           270: *
        !           271:          CALL ZSTEQR( COMPZ, N, D, E, Z, LDZ, RWORK, INFO )
        !           272: *
        !           273:       ELSE
        !           274: *
        !           275: *        If COMPZ = 'I', we simply call DSTEDC instead.
        !           276: *
        !           277:          IF( ICOMPZ.EQ.2 ) THEN
        !           278:             CALL DLASET( 'Full', N, N, ZERO, ONE, RWORK, N )
        !           279:             LL = N*N + 1
        !           280:             CALL DSTEDC( 'I', N, D, E, RWORK, N,
        !           281:      $                   RWORK( LL ), LRWORK-LL+1, IWORK, LIWORK, INFO )
        !           282:             DO 20 J = 1, N
        !           283:                DO 10 I = 1, N
        !           284:                   Z( I, J ) = RWORK( ( J-1 )*N+I )
        !           285:    10          CONTINUE
        !           286:    20       CONTINUE
        !           287:             GO TO 70
        !           288:          END IF
        !           289: *
        !           290: *        From now on, only option left to be handled is COMPZ = 'V',
        !           291: *        i.e. ICOMPZ = 1.
        !           292: *
        !           293: *        Scale.
        !           294: *
        !           295:          ORGNRM = DLANST( 'M', N, D, E )
        !           296:          IF( ORGNRM.EQ.ZERO )
        !           297:      $      GO TO 70
        !           298: *
        !           299:          EPS = DLAMCH( 'Epsilon' )
        !           300: *
        !           301:          START = 1
        !           302: *
        !           303: *        while ( START <= N )
        !           304: *
        !           305:    30    CONTINUE
        !           306:          IF( START.LE.N ) THEN
        !           307: *
        !           308: *           Let FINISH be the position of the next subdiagonal entry
        !           309: *           such that E( FINISH ) <= TINY or FINISH = N if no such
        !           310: *           subdiagonal exists.  The matrix identified by the elements
        !           311: *           between START and FINISH constitutes an independent
        !           312: *           sub-problem.
        !           313: *
        !           314:             FINISH = START
        !           315:    40       CONTINUE
        !           316:             IF( FINISH.LT.N ) THEN
        !           317:                TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
        !           318:      $                    SQRT( ABS( D( FINISH+1 ) ) )
        !           319:                IF( ABS( E( FINISH ) ).GT.TINY ) THEN
        !           320:                   FINISH = FINISH + 1
        !           321:                   GO TO 40
        !           322:                END IF
        !           323:             END IF
        !           324: *
        !           325: *           (Sub) Problem determined.  Compute its size and solve it.
        !           326: *
        !           327:             M = FINISH - START + 1
        !           328:             IF( M.GT.SMLSIZ ) THEN
        !           329: *
        !           330: *              Scale.
        !           331: *
        !           332:                ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
        !           333:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
        !           334:      $                      INFO )
        !           335:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
        !           336:      $                      M-1, INFO )
        !           337: *
        !           338:                CALL ZLAED0( N, M, D( START ), E( START ), Z( 1, START ),
        !           339:      $                      LDZ, WORK, N, RWORK, IWORK, INFO )
        !           340:                IF( INFO.GT.0 ) THEN
        !           341:                   INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
        !           342:      $                   MOD( INFO, ( M+1 ) ) + START - 1
        !           343:                   GO TO 70
        !           344:                END IF
        !           345: *
        !           346: *              Scale back.
        !           347: *
        !           348:                CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
        !           349:      $                      INFO )
        !           350: *
        !           351:             ELSE
        !           352:                CALL DSTEQR( 'I', M, D( START ), E( START ), RWORK, M,
        !           353:      $                      RWORK( M*M+1 ), INFO )
        !           354:                CALL ZLACRM( N, M, Z( 1, START ), LDZ, RWORK, M, WORK, N,
        !           355:      $                      RWORK( M*M+1 ) )
        !           356:                CALL ZLACPY( 'A', N, M, WORK, N, Z( 1, START ), LDZ )
        !           357:                IF( INFO.GT.0 ) THEN
        !           358:                   INFO = START*( N+1 ) + FINISH
        !           359:                   GO TO 70
        !           360:                END IF
        !           361:             END IF
        !           362: *
        !           363:             START = FINISH + 1
        !           364:             GO TO 30
        !           365:          END IF
        !           366: *
        !           367: *        endwhile
        !           368: *
        !           369: *        If the problem split any number of times, then the eigenvalues
        !           370: *        will not be properly ordered.  Here we permute the eigenvalues
        !           371: *        (and the associated eigenvectors) into ascending order.
        !           372: *
        !           373:          IF( M.NE.N ) THEN
        !           374: *
        !           375: *           Use Selection Sort to minimize swaps of eigenvectors
        !           376: *
        !           377:             DO 60 II = 2, N
        !           378:                I = II - 1
        !           379:                K = I
        !           380:                P = D( I )
        !           381:                DO 50 J = II, N
        !           382:                   IF( D( J ).LT.P ) THEN
        !           383:                      K = J
        !           384:                      P = D( J )
        !           385:                   END IF
        !           386:    50          CONTINUE
        !           387:                IF( K.NE.I ) THEN
        !           388:                   D( K ) = D( I )
        !           389:                   D( I ) = P
        !           390:                   CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
        !           391:                END IF
        !           392:    60       CONTINUE
        !           393:          END IF
        !           394:       END IF
        !           395: *
        !           396:    70 CONTINUE
        !           397:       WORK( 1 ) = LWMIN
        !           398:       RWORK( 1 ) = LRWMIN
        !           399:       IWORK( 1 ) = LIWMIN
        !           400: *
        !           401:       RETURN
        !           402: *
        !           403: *     End of ZSTEDC
        !           404: *
        !           405:       END

CVSweb interface <joel.bertrand@systella.fr>