File:  [local] / rpl / lapack / lapack / zsptrs.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:38 2010 UTC (14 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE ZSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, LDB, N, NRHS
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       COMPLEX*16         AP( * ), B( LDB, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZSPTRS solves a system of linear equations A*X = B with a complex
   21: *  symmetric matrix A stored in packed format using the factorization
   22: *  A = U*D*U**T or A = L*D*L**T computed by ZSPTRF.
   23: *
   24: *  Arguments
   25: *  =========
   26: *
   27: *  UPLO    (input) CHARACTER*1
   28: *          Specifies whether the details of the factorization are stored
   29: *          as an upper or lower triangular matrix.
   30: *          = 'U':  Upper triangular, form is A = U*D*U**T;
   31: *          = 'L':  Lower triangular, form is A = L*D*L**T.
   32: *
   33: *  N       (input) INTEGER
   34: *          The order of the matrix A.  N >= 0.
   35: *
   36: *  NRHS    (input) INTEGER
   37: *          The number of right hand sides, i.e., the number of columns
   38: *          of the matrix B.  NRHS >= 0.
   39: *
   40: *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
   41: *          The block diagonal matrix D and the multipliers used to
   42: *          obtain the factor U or L as computed by ZSPTRF, stored as a
   43: *          packed triangular matrix.
   44: *
   45: *  IPIV    (input) INTEGER array, dimension (N)
   46: *          Details of the interchanges and the block structure of D
   47: *          as determined by ZSPTRF.
   48: *
   49: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
   50: *          On entry, the right hand side matrix B.
   51: *          On exit, the solution matrix X.
   52: *
   53: *  LDB     (input) INTEGER
   54: *          The leading dimension of the array B.  LDB >= max(1,N).
   55: *
   56: *  INFO    (output) INTEGER
   57: *          = 0:  successful exit
   58: *          < 0: if INFO = -i, the i-th argument had an illegal value
   59: *
   60: *  =====================================================================
   61: *
   62: *     .. Parameters ..
   63:       COMPLEX*16         ONE
   64:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
   65: *     ..
   66: *     .. Local Scalars ..
   67:       LOGICAL            UPPER
   68:       INTEGER            J, K, KC, KP
   69:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
   70: *     ..
   71: *     .. External Functions ..
   72:       LOGICAL            LSAME
   73:       EXTERNAL           LSAME
   74: *     ..
   75: *     .. External Subroutines ..
   76:       EXTERNAL           XERBLA, ZGEMV, ZGERU, ZSCAL, ZSWAP
   77: *     ..
   78: *     .. Intrinsic Functions ..
   79:       INTRINSIC          MAX
   80: *     ..
   81: *     .. Executable Statements ..
   82: *
   83:       INFO = 0
   84:       UPPER = LSAME( UPLO, 'U' )
   85:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
   86:          INFO = -1
   87:       ELSE IF( N.LT.0 ) THEN
   88:          INFO = -2
   89:       ELSE IF( NRHS.LT.0 ) THEN
   90:          INFO = -3
   91:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
   92:          INFO = -7
   93:       END IF
   94:       IF( INFO.NE.0 ) THEN
   95:          CALL XERBLA( 'ZSPTRS', -INFO )
   96:          RETURN
   97:       END IF
   98: *
   99: *     Quick return if possible
  100: *
  101:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  102:      $   RETURN
  103: *
  104:       IF( UPPER ) THEN
  105: *
  106: *        Solve A*X = B, where A = U*D*U'.
  107: *
  108: *        First solve U*D*X = B, overwriting B with X.
  109: *
  110: *        K is the main loop index, decreasing from N to 1 in steps of
  111: *        1 or 2, depending on the size of the diagonal blocks.
  112: *
  113:          K = N
  114:          KC = N*( N+1 ) / 2 + 1
  115:    10    CONTINUE
  116: *
  117: *        If K < 1, exit from loop.
  118: *
  119:          IF( K.LT.1 )
  120:      $      GO TO 30
  121: *
  122:          KC = KC - K
  123:          IF( IPIV( K ).GT.0 ) THEN
  124: *
  125: *           1 x 1 diagonal block
  126: *
  127: *           Interchange rows K and IPIV(K).
  128: *
  129:             KP = IPIV( K )
  130:             IF( KP.NE.K )
  131:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  132: *
  133: *           Multiply by inv(U(K)), where U(K) is the transformation
  134: *           stored in column K of A.
  135: *
  136:             CALL ZGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  137:      $                  B( 1, 1 ), LDB )
  138: *
  139: *           Multiply by the inverse of the diagonal block.
  140: *
  141:             CALL ZSCAL( NRHS, ONE / AP( KC+K-1 ), B( K, 1 ), LDB )
  142:             K = K - 1
  143:          ELSE
  144: *
  145: *           2 x 2 diagonal block
  146: *
  147: *           Interchange rows K-1 and -IPIV(K).
  148: *
  149:             KP = -IPIV( K )
  150:             IF( KP.NE.K-1 )
  151:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  152: *
  153: *           Multiply by inv(U(K)), where U(K) is the transformation
  154: *           stored in columns K-1 and K of A.
  155: *
  156:             CALL ZGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  157:      $                  B( 1, 1 ), LDB )
  158:             CALL ZGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1,
  159:      $                  B( K-1, 1 ), LDB, B( 1, 1 ), LDB )
  160: *
  161: *           Multiply by the inverse of the diagonal block.
  162: *
  163:             AKM1K = AP( KC+K-2 )
  164:             AKM1 = AP( KC-1 ) / AKM1K
  165:             AK = AP( KC+K-1 ) / AKM1K
  166:             DENOM = AKM1*AK - ONE
  167:             DO 20 J = 1, NRHS
  168:                BKM1 = B( K-1, J ) / AKM1K
  169:                BK = B( K, J ) / AKM1K
  170:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  171:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  172:    20       CONTINUE
  173:             KC = KC - K + 1
  174:             K = K - 2
  175:          END IF
  176: *
  177:          GO TO 10
  178:    30    CONTINUE
  179: *
  180: *        Next solve U'*X = B, overwriting B with X.
  181: *
  182: *        K is the main loop index, increasing from 1 to N in steps of
  183: *        1 or 2, depending on the size of the diagonal blocks.
  184: *
  185:          K = 1
  186:          KC = 1
  187:    40    CONTINUE
  188: *
  189: *        If K > N, exit from loop.
  190: *
  191:          IF( K.GT.N )
  192:      $      GO TO 50
  193: *
  194:          IF( IPIV( K ).GT.0 ) THEN
  195: *
  196: *           1 x 1 diagonal block
  197: *
  198: *           Multiply by inv(U'(K)), where U(K) is the transformation
  199: *           stored in column K of A.
  200: *
  201:             CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ),
  202:      $                  1, ONE, B( K, 1 ), LDB )
  203: *
  204: *           Interchange rows K and IPIV(K).
  205: *
  206:             KP = IPIV( K )
  207:             IF( KP.NE.K )
  208:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  209:             KC = KC + K
  210:             K = K + 1
  211:          ELSE
  212: *
  213: *           2 x 2 diagonal block
  214: *
  215: *           Multiply by inv(U'(K+1)), where U(K+1) is the transformation
  216: *           stored in columns K and K+1 of A.
  217: *
  218:             CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ),
  219:      $                  1, ONE, B( K, 1 ), LDB )
  220:             CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB,
  221:      $                  AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB )
  222: *
  223: *           Interchange rows K and -IPIV(K).
  224: *
  225:             KP = -IPIV( K )
  226:             IF( KP.NE.K )
  227:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  228:             KC = KC + 2*K + 1
  229:             K = K + 2
  230:          END IF
  231: *
  232:          GO TO 40
  233:    50    CONTINUE
  234: *
  235:       ELSE
  236: *
  237: *        Solve A*X = B, where A = L*D*L'.
  238: *
  239: *        First solve L*D*X = B, overwriting B with X.
  240: *
  241: *        K is the main loop index, increasing from 1 to N in steps of
  242: *        1 or 2, depending on the size of the diagonal blocks.
  243: *
  244:          K = 1
  245:          KC = 1
  246:    60    CONTINUE
  247: *
  248: *        If K > N, exit from loop.
  249: *
  250:          IF( K.GT.N )
  251:      $      GO TO 80
  252: *
  253:          IF( IPIV( K ).GT.0 ) THEN
  254: *
  255: *           1 x 1 diagonal block
  256: *
  257: *           Interchange rows K and IPIV(K).
  258: *
  259:             KP = IPIV( K )
  260:             IF( KP.NE.K )
  261:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  262: *
  263: *           Multiply by inv(L(K)), where L(K) is the transformation
  264: *           stored in column K of A.
  265: *
  266:             IF( K.LT.N )
  267:      $         CALL ZGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ),
  268:      $                     LDB, B( K+1, 1 ), LDB )
  269: *
  270: *           Multiply by the inverse of the diagonal block.
  271: *
  272:             CALL ZSCAL( NRHS, ONE / AP( KC ), B( K, 1 ), LDB )
  273:             KC = KC + N - K + 1
  274:             K = K + 1
  275:          ELSE
  276: *
  277: *           2 x 2 diagonal block
  278: *
  279: *           Interchange rows K+1 and -IPIV(K).
  280: *
  281:             KP = -IPIV( K )
  282:             IF( KP.NE.K+1 )
  283:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  284: *
  285: *           Multiply by inv(L(K)), where L(K) is the transformation
  286: *           stored in columns K and K+1 of A.
  287: *
  288:             IF( K.LT.N-1 ) THEN
  289:                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ),
  290:      $                     LDB, B( K+2, 1 ), LDB )
  291:                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1,
  292:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  293:             END IF
  294: *
  295: *           Multiply by the inverse of the diagonal block.
  296: *
  297:             AKM1K = AP( KC+1 )
  298:             AKM1 = AP( KC ) / AKM1K
  299:             AK = AP( KC+N-K+1 ) / AKM1K
  300:             DENOM = AKM1*AK - ONE
  301:             DO 70 J = 1, NRHS
  302:                BKM1 = B( K, J ) / AKM1K
  303:                BK = B( K+1, J ) / AKM1K
  304:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  305:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  306:    70       CONTINUE
  307:             KC = KC + 2*( N-K ) + 1
  308:             K = K + 2
  309:          END IF
  310: *
  311:          GO TO 60
  312:    80    CONTINUE
  313: *
  314: *        Next solve L'*X = B, overwriting B with X.
  315: *
  316: *        K is the main loop index, decreasing from N to 1 in steps of
  317: *        1 or 2, depending on the size of the diagonal blocks.
  318: *
  319:          K = N
  320:          KC = N*( N+1 ) / 2 + 1
  321:    90    CONTINUE
  322: *
  323: *        If K < 1, exit from loop.
  324: *
  325:          IF( K.LT.1 )
  326:      $      GO TO 100
  327: *
  328:          KC = KC - ( N-K+1 )
  329:          IF( IPIV( K ).GT.0 ) THEN
  330: *
  331: *           1 x 1 diagonal block
  332: *
  333: *           Multiply by inv(L'(K)), where L(K) is the transformation
  334: *           stored in column K of A.
  335: *
  336:             IF( K.LT.N )
  337:      $         CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  338:      $                     LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB )
  339: *
  340: *           Interchange rows K and IPIV(K).
  341: *
  342:             KP = IPIV( K )
  343:             IF( KP.NE.K )
  344:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  345:             K = K - 1
  346:          ELSE
  347: *
  348: *           2 x 2 diagonal block
  349: *
  350: *           Multiply by inv(L'(K-1)), where L(K-1) is the transformation
  351: *           stored in columns K-1 and K of A.
  352: *
  353:             IF( K.LT.N ) THEN
  354:                CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  355:      $                     LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB )
  356:                CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  357:      $                     LDB, AP( KC-( N-K ) ), 1, ONE, B( K-1, 1 ),
  358:      $                     LDB )
  359:             END IF
  360: *
  361: *           Interchange rows K and -IPIV(K).
  362: *
  363:             KP = -IPIV( K )
  364:             IF( KP.NE.K )
  365:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  366:             KC = KC - ( N-K+2 )
  367:             K = K - 2
  368:          END IF
  369: *
  370:          GO TO 90
  371:   100    CONTINUE
  372:       END IF
  373: *
  374:       RETURN
  375: *
  376: *     End of ZSPTRS
  377: *
  378:       END

CVSweb interface <joel.bertrand@systella.fr>