File:  [local] / rpl / lapack / lapack / zsptrs.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:37 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSPTRS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSPTRS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsptrs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsptrs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsptrs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDB, N, NRHS
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         AP( * ), B( LDB, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSPTRS solves a system of linear equations A*X = B with a complex
   39: *> symmetric matrix A stored in packed format using the factorization
   40: *> A = U*D*U**T or A = L*D*L**T computed by ZSPTRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NRHS
   62: *> \verbatim
   63: *>          NRHS is INTEGER
   64: *>          The number of right hand sides, i.e., the number of columns
   65: *>          of the matrix B.  NRHS >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] AP
   69: *> \verbatim
   70: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   71: *>          The block diagonal matrix D and the multipliers used to
   72: *>          obtain the factor U or L as computed by ZSPTRF, stored as a
   73: *>          packed triangular matrix.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] IPIV
   77: *> \verbatim
   78: *>          IPIV is INTEGER array, dimension (N)
   79: *>          Details of the interchanges and the block structure of D
   80: *>          as determined by ZSPTRF.
   81: *> \endverbatim
   82: *>
   83: *> \param[in,out] B
   84: *> \verbatim
   85: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   86: *>          On entry, the right hand side matrix B.
   87: *>          On exit, the solution matrix X.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] LDB
   91: *> \verbatim
   92: *>          LDB is INTEGER
   93: *>          The leading dimension of the array B.  LDB >= max(1,N).
   94: *> \endverbatim
   95: *>
   96: *> \param[out] INFO
   97: *> \verbatim
   98: *>          INFO is INTEGER
   99: *>          = 0:  successful exit
  100: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  101: *> \endverbatim
  102: *
  103: *  Authors:
  104: *  ========
  105: *
  106: *> \author Univ. of Tennessee
  107: *> \author Univ. of California Berkeley
  108: *> \author Univ. of Colorado Denver
  109: *> \author NAG Ltd.
  110: *
  111: *> \ingroup complex16OTHERcomputational
  112: *
  113: *  =====================================================================
  114:       SUBROUTINE ZSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
  115: *
  116: *  -- LAPACK computational routine --
  117: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  118: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  119: *
  120: *     .. Scalar Arguments ..
  121:       CHARACTER          UPLO
  122:       INTEGER            INFO, LDB, N, NRHS
  123: *     ..
  124: *     .. Array Arguments ..
  125:       INTEGER            IPIV( * )
  126:       COMPLEX*16         AP( * ), B( LDB, * )
  127: *     ..
  128: *
  129: *  =====================================================================
  130: *
  131: *     .. Parameters ..
  132:       COMPLEX*16         ONE
  133:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  134: *     ..
  135: *     .. Local Scalars ..
  136:       LOGICAL            UPPER
  137:       INTEGER            J, K, KC, KP
  138:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
  139: *     ..
  140: *     .. External Functions ..
  141:       LOGICAL            LSAME
  142:       EXTERNAL           LSAME
  143: *     ..
  144: *     .. External Subroutines ..
  145:       EXTERNAL           XERBLA, ZGEMV, ZGERU, ZSCAL, ZSWAP
  146: *     ..
  147: *     .. Intrinsic Functions ..
  148:       INTRINSIC          MAX
  149: *     ..
  150: *     .. Executable Statements ..
  151: *
  152:       INFO = 0
  153:       UPPER = LSAME( UPLO, 'U' )
  154:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  155:          INFO = -1
  156:       ELSE IF( N.LT.0 ) THEN
  157:          INFO = -2
  158:       ELSE IF( NRHS.LT.0 ) THEN
  159:          INFO = -3
  160:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  161:          INFO = -7
  162:       END IF
  163:       IF( INFO.NE.0 ) THEN
  164:          CALL XERBLA( 'ZSPTRS', -INFO )
  165:          RETURN
  166:       END IF
  167: *
  168: *     Quick return if possible
  169: *
  170:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  171:      $   RETURN
  172: *
  173:       IF( UPPER ) THEN
  174: *
  175: *        Solve A*X = B, where A = U*D*U**T.
  176: *
  177: *        First solve U*D*X = B, overwriting B with X.
  178: *
  179: *        K is the main loop index, decreasing from N to 1 in steps of
  180: *        1 or 2, depending on the size of the diagonal blocks.
  181: *
  182:          K = N
  183:          KC = N*( N+1 ) / 2 + 1
  184:    10    CONTINUE
  185: *
  186: *        If K < 1, exit from loop.
  187: *
  188:          IF( K.LT.1 )
  189:      $      GO TO 30
  190: *
  191:          KC = KC - K
  192:          IF( IPIV( K ).GT.0 ) THEN
  193: *
  194: *           1 x 1 diagonal block
  195: *
  196: *           Interchange rows K and IPIV(K).
  197: *
  198:             KP = IPIV( K )
  199:             IF( KP.NE.K )
  200:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  201: *
  202: *           Multiply by inv(U(K)), where U(K) is the transformation
  203: *           stored in column K of A.
  204: *
  205:             CALL ZGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  206:      $                  B( 1, 1 ), LDB )
  207: *
  208: *           Multiply by the inverse of the diagonal block.
  209: *
  210:             CALL ZSCAL( NRHS, ONE / AP( KC+K-1 ), B( K, 1 ), LDB )
  211:             K = K - 1
  212:          ELSE
  213: *
  214: *           2 x 2 diagonal block
  215: *
  216: *           Interchange rows K-1 and -IPIV(K).
  217: *
  218:             KP = -IPIV( K )
  219:             IF( KP.NE.K-1 )
  220:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  221: *
  222: *           Multiply by inv(U(K)), where U(K) is the transformation
  223: *           stored in columns K-1 and K of A.
  224: *
  225:             CALL ZGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  226:      $                  B( 1, 1 ), LDB )
  227:             CALL ZGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1,
  228:      $                  B( K-1, 1 ), LDB, B( 1, 1 ), LDB )
  229: *
  230: *           Multiply by the inverse of the diagonal block.
  231: *
  232:             AKM1K = AP( KC+K-2 )
  233:             AKM1 = AP( KC-1 ) / AKM1K
  234:             AK = AP( KC+K-1 ) / AKM1K
  235:             DENOM = AKM1*AK - ONE
  236:             DO 20 J = 1, NRHS
  237:                BKM1 = B( K-1, J ) / AKM1K
  238:                BK = B( K, J ) / AKM1K
  239:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  240:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  241:    20       CONTINUE
  242:             KC = KC - K + 1
  243:             K = K - 2
  244:          END IF
  245: *
  246:          GO TO 10
  247:    30    CONTINUE
  248: *
  249: *        Next solve U**T*X = B, overwriting B with X.
  250: *
  251: *        K is the main loop index, increasing from 1 to N in steps of
  252: *        1 or 2, depending on the size of the diagonal blocks.
  253: *
  254:          K = 1
  255:          KC = 1
  256:    40    CONTINUE
  257: *
  258: *        If K > N, exit from loop.
  259: *
  260:          IF( K.GT.N )
  261:      $      GO TO 50
  262: *
  263:          IF( IPIV( K ).GT.0 ) THEN
  264: *
  265: *           1 x 1 diagonal block
  266: *
  267: *           Multiply by inv(U**T(K)), where U(K) is the transformation
  268: *           stored in column K of A.
  269: *
  270:             CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ),
  271:      $                  1, ONE, B( K, 1 ), LDB )
  272: *
  273: *           Interchange rows K and IPIV(K).
  274: *
  275:             KP = IPIV( K )
  276:             IF( KP.NE.K )
  277:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  278:             KC = KC + K
  279:             K = K + 1
  280:          ELSE
  281: *
  282: *           2 x 2 diagonal block
  283: *
  284: *           Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
  285: *           stored in columns K and K+1 of A.
  286: *
  287:             CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ),
  288:      $                  1, ONE, B( K, 1 ), LDB )
  289:             CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB,
  290:      $                  AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB )
  291: *
  292: *           Interchange rows K and -IPIV(K).
  293: *
  294:             KP = -IPIV( K )
  295:             IF( KP.NE.K )
  296:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  297:             KC = KC + 2*K + 1
  298:             K = K + 2
  299:          END IF
  300: *
  301:          GO TO 40
  302:    50    CONTINUE
  303: *
  304:       ELSE
  305: *
  306: *        Solve A*X = B, where A = L*D*L**T.
  307: *
  308: *        First solve L*D*X = B, overwriting B with X.
  309: *
  310: *        K is the main loop index, increasing from 1 to N in steps of
  311: *        1 or 2, depending on the size of the diagonal blocks.
  312: *
  313:          K = 1
  314:          KC = 1
  315:    60    CONTINUE
  316: *
  317: *        If K > N, exit from loop.
  318: *
  319:          IF( K.GT.N )
  320:      $      GO TO 80
  321: *
  322:          IF( IPIV( K ).GT.0 ) THEN
  323: *
  324: *           1 x 1 diagonal block
  325: *
  326: *           Interchange rows K and IPIV(K).
  327: *
  328:             KP = IPIV( K )
  329:             IF( KP.NE.K )
  330:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  331: *
  332: *           Multiply by inv(L(K)), where L(K) is the transformation
  333: *           stored in column K of A.
  334: *
  335:             IF( K.LT.N )
  336:      $         CALL ZGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ),
  337:      $                     LDB, B( K+1, 1 ), LDB )
  338: *
  339: *           Multiply by the inverse of the diagonal block.
  340: *
  341:             CALL ZSCAL( NRHS, ONE / AP( KC ), B( K, 1 ), LDB )
  342:             KC = KC + N - K + 1
  343:             K = K + 1
  344:          ELSE
  345: *
  346: *           2 x 2 diagonal block
  347: *
  348: *           Interchange rows K+1 and -IPIV(K).
  349: *
  350:             KP = -IPIV( K )
  351:             IF( KP.NE.K+1 )
  352:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  353: *
  354: *           Multiply by inv(L(K)), where L(K) is the transformation
  355: *           stored in columns K and K+1 of A.
  356: *
  357:             IF( K.LT.N-1 ) THEN
  358:                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ),
  359:      $                     LDB, B( K+2, 1 ), LDB )
  360:                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1,
  361:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  362:             END IF
  363: *
  364: *           Multiply by the inverse of the diagonal block.
  365: *
  366:             AKM1K = AP( KC+1 )
  367:             AKM1 = AP( KC ) / AKM1K
  368:             AK = AP( KC+N-K+1 ) / AKM1K
  369:             DENOM = AKM1*AK - ONE
  370:             DO 70 J = 1, NRHS
  371:                BKM1 = B( K, J ) / AKM1K
  372:                BK = B( K+1, J ) / AKM1K
  373:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  374:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  375:    70       CONTINUE
  376:             KC = KC + 2*( N-K ) + 1
  377:             K = K + 2
  378:          END IF
  379: *
  380:          GO TO 60
  381:    80    CONTINUE
  382: *
  383: *        Next solve L**T*X = B, overwriting B with X.
  384: *
  385: *        K is the main loop index, decreasing from N to 1 in steps of
  386: *        1 or 2, depending on the size of the diagonal blocks.
  387: *
  388:          K = N
  389:          KC = N*( N+1 ) / 2 + 1
  390:    90    CONTINUE
  391: *
  392: *        If K < 1, exit from loop.
  393: *
  394:          IF( K.LT.1 )
  395:      $      GO TO 100
  396: *
  397:          KC = KC - ( N-K+1 )
  398:          IF( IPIV( K ).GT.0 ) THEN
  399: *
  400: *           1 x 1 diagonal block
  401: *
  402: *           Multiply by inv(L**T(K)), where L(K) is the transformation
  403: *           stored in column K of A.
  404: *
  405:             IF( K.LT.N )
  406:      $         CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  407:      $                     LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB )
  408: *
  409: *           Interchange rows K and IPIV(K).
  410: *
  411:             KP = IPIV( K )
  412:             IF( KP.NE.K )
  413:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  414:             K = K - 1
  415:          ELSE
  416: *
  417: *           2 x 2 diagonal block
  418: *
  419: *           Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
  420: *           stored in columns K-1 and K of A.
  421: *
  422:             IF( K.LT.N ) THEN
  423:                CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  424:      $                     LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB )
  425:                CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  426:      $                     LDB, AP( KC-( N-K ) ), 1, ONE, B( K-1, 1 ),
  427:      $                     LDB )
  428:             END IF
  429: *
  430: *           Interchange rows K and -IPIV(K).
  431: *
  432:             KP = -IPIV( K )
  433:             IF( KP.NE.K )
  434:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  435:             KC = KC - ( N-K+2 )
  436:             K = K - 2
  437:          END IF
  438: *
  439:          GO TO 90
  440:   100    CONTINUE
  441:       END IF
  442: *
  443:       RETURN
  444: *
  445: *     End of ZSPTRS
  446: *
  447:       END

CVSweb interface <joel.bertrand@systella.fr>