File:  [local] / rpl / lapack / lapack / zsptri.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:37 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSPTRI
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSPTRI + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsptri.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsptri.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsptri.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         AP( * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSPTRI computes the inverse of a complex symmetric indefinite matrix
   39: *> A in packed storage using the factorization A = U*D*U**T or
   40: *> A = L*D*L**T computed by ZSPTRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in,out] AP
   62: *> \verbatim
   63: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   64: *>          On entry, the block diagonal matrix D and the multipliers
   65: *>          used to obtain the factor U or L as computed by ZSPTRF,
   66: *>          stored as a packed triangular matrix.
   67: *>
   68: *>          On exit, if INFO = 0, the (symmetric) inverse of the original
   69: *>          matrix, stored as a packed triangular matrix. The j-th column
   70: *>          of inv(A) is stored in the array AP as follows:
   71: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
   72: *>          if UPLO = 'L',
   73: *>             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] IPIV
   77: *> \verbatim
   78: *>          IPIV is INTEGER array, dimension (N)
   79: *>          Details of the interchanges and the block structure of D
   80: *>          as determined by ZSPTRF.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] WORK
   84: *> \verbatim
   85: *>          WORK is COMPLEX*16 array, dimension (N)
   86: *> \endverbatim
   87: *>
   88: *> \param[out] INFO
   89: *> \verbatim
   90: *>          INFO is INTEGER
   91: *>          = 0: successful exit
   92: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   93: *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
   94: *>               inverse could not be computed.
   95: *> \endverbatim
   96: *
   97: *  Authors:
   98: *  ========
   99: *
  100: *> \author Univ. of Tennessee
  101: *> \author Univ. of California Berkeley
  102: *> \author Univ. of Colorado Denver
  103: *> \author NAG Ltd.
  104: *
  105: *> \ingroup complex16OTHERcomputational
  106: *
  107: *  =====================================================================
  108:       SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  109: *
  110: *  -- LAPACK computational routine --
  111: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  112: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  113: *
  114: *     .. Scalar Arguments ..
  115:       CHARACTER          UPLO
  116:       INTEGER            INFO, N
  117: *     ..
  118: *     .. Array Arguments ..
  119:       INTEGER            IPIV( * )
  120:       COMPLEX*16         AP( * ), WORK( * )
  121: *     ..
  122: *
  123: *  =====================================================================
  124: *
  125: *     .. Parameters ..
  126:       COMPLEX*16         ONE, ZERO
  127:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
  128:      $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
  129: *     ..
  130: *     .. Local Scalars ..
  131:       LOGICAL            UPPER
  132:       INTEGER            J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
  133:       COMPLEX*16         AK, AKKP1, AKP1, D, T, TEMP
  134: *     ..
  135: *     .. External Functions ..
  136:       LOGICAL            LSAME
  137:       COMPLEX*16         ZDOTU
  138:       EXTERNAL           LSAME, ZDOTU
  139: *     ..
  140: *     .. External Subroutines ..
  141:       EXTERNAL           XERBLA, ZCOPY, ZSPMV, ZSWAP
  142: *     ..
  143: *     .. Intrinsic Functions ..
  144:       INTRINSIC          ABS
  145: *     ..
  146: *     .. Executable Statements ..
  147: *
  148: *     Test the input parameters.
  149: *
  150:       INFO = 0
  151:       UPPER = LSAME( UPLO, 'U' )
  152:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  153:          INFO = -1
  154:       ELSE IF( N.LT.0 ) THEN
  155:          INFO = -2
  156:       END IF
  157:       IF( INFO.NE.0 ) THEN
  158:          CALL XERBLA( 'ZSPTRI', -INFO )
  159:          RETURN
  160:       END IF
  161: *
  162: *     Quick return if possible
  163: *
  164:       IF( N.EQ.0 )
  165:      $   RETURN
  166: *
  167: *     Check that the diagonal matrix D is nonsingular.
  168: *
  169:       IF( UPPER ) THEN
  170: *
  171: *        Upper triangular storage: examine D from bottom to top
  172: *
  173:          KP = N*( N+1 ) / 2
  174:          DO 10 INFO = N, 1, -1
  175:             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  176:      $         RETURN
  177:             KP = KP - INFO
  178:    10    CONTINUE
  179:       ELSE
  180: *
  181: *        Lower triangular storage: examine D from top to bottom.
  182: *
  183:          KP = 1
  184:          DO 20 INFO = 1, N
  185:             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  186:      $         RETURN
  187:             KP = KP + N - INFO + 1
  188:    20    CONTINUE
  189:       END IF
  190:       INFO = 0
  191: *
  192:       IF( UPPER ) THEN
  193: *
  194: *        Compute inv(A) from the factorization A = U*D*U**T.
  195: *
  196: *        K is the main loop index, increasing from 1 to N in steps of
  197: *        1 or 2, depending on the size of the diagonal blocks.
  198: *
  199:          K = 1
  200:          KC = 1
  201:    30    CONTINUE
  202: *
  203: *        If K > N, exit from loop.
  204: *
  205:          IF( K.GT.N )
  206:      $      GO TO 50
  207: *
  208:          KCNEXT = KC + K
  209:          IF( IPIV( K ).GT.0 ) THEN
  210: *
  211: *           1 x 1 diagonal block
  212: *
  213: *           Invert the diagonal block.
  214: *
  215:             AP( KC+K-1 ) = ONE / AP( KC+K-1 )
  216: *
  217: *           Compute column K of the inverse.
  218: *
  219:             IF( K.GT.1 ) THEN
  220:                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  221:                CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
  222:      $                     1 )
  223:                AP( KC+K-1 ) = AP( KC+K-1 ) -
  224:      $                        ZDOTU( K-1, WORK, 1, AP( KC ), 1 )
  225:             END IF
  226:             KSTEP = 1
  227:          ELSE
  228: *
  229: *           2 x 2 diagonal block
  230: *
  231: *           Invert the diagonal block.
  232: *
  233:             T = AP( KCNEXT+K-1 )
  234:             AK = AP( KC+K-1 ) / T
  235:             AKP1 = AP( KCNEXT+K ) / T
  236:             AKKP1 = AP( KCNEXT+K-1 ) / T
  237:             D = T*( AK*AKP1-ONE )
  238:             AP( KC+K-1 ) = AKP1 / D
  239:             AP( KCNEXT+K ) = AK / D
  240:             AP( KCNEXT+K-1 ) = -AKKP1 / D
  241: *
  242: *           Compute columns K and K+1 of the inverse.
  243: *
  244:             IF( K.GT.1 ) THEN
  245:                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  246:                CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
  247:      $                     1 )
  248:                AP( KC+K-1 ) = AP( KC+K-1 ) -
  249:      $                        ZDOTU( K-1, WORK, 1, AP( KC ), 1 )
  250:                AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
  251:      $                            ZDOTU( K-1, AP( KC ), 1, AP( KCNEXT ),
  252:      $                            1 )
  253:                CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
  254:                CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO,
  255:      $                     AP( KCNEXT ), 1 )
  256:                AP( KCNEXT+K ) = AP( KCNEXT+K ) -
  257:      $                          ZDOTU( K-1, WORK, 1, AP( KCNEXT ), 1 )
  258:             END IF
  259:             KSTEP = 2
  260:             KCNEXT = KCNEXT + K + 1
  261:          END IF
  262: *
  263:          KP = ABS( IPIV( K ) )
  264:          IF( KP.NE.K ) THEN
  265: *
  266: *           Interchange rows and columns K and KP in the leading
  267: *           submatrix A(1:k+1,1:k+1)
  268: *
  269:             KPC = ( KP-1 )*KP / 2 + 1
  270:             CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
  271:             KX = KPC + KP - 1
  272:             DO 40 J = KP + 1, K - 1
  273:                KX = KX + J - 1
  274:                TEMP = AP( KC+J-1 )
  275:                AP( KC+J-1 ) = AP( KX )
  276:                AP( KX ) = TEMP
  277:    40       CONTINUE
  278:             TEMP = AP( KC+K-1 )
  279:             AP( KC+K-1 ) = AP( KPC+KP-1 )
  280:             AP( KPC+KP-1 ) = TEMP
  281:             IF( KSTEP.EQ.2 ) THEN
  282:                TEMP = AP( KC+K+K-1 )
  283:                AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
  284:                AP( KC+K+KP-1 ) = TEMP
  285:             END IF
  286:          END IF
  287: *
  288:          K = K + KSTEP
  289:          KC = KCNEXT
  290:          GO TO 30
  291:    50    CONTINUE
  292: *
  293:       ELSE
  294: *
  295: *        Compute inv(A) from the factorization A = L*D*L**T.
  296: *
  297: *        K is the main loop index, increasing from 1 to N in steps of
  298: *        1 or 2, depending on the size of the diagonal blocks.
  299: *
  300:          NPP = N*( N+1 ) / 2
  301:          K = N
  302:          KC = NPP
  303:    60    CONTINUE
  304: *
  305: *        If K < 1, exit from loop.
  306: *
  307:          IF( K.LT.1 )
  308:      $      GO TO 80
  309: *
  310:          KCNEXT = KC - ( N-K+2 )
  311:          IF( IPIV( K ).GT.0 ) THEN
  312: *
  313: *           1 x 1 diagonal block
  314: *
  315: *           Invert the diagonal block.
  316: *
  317:             AP( KC ) = ONE / AP( KC )
  318: *
  319: *           Compute column K of the inverse.
  320: *
  321:             IF( K.LT.N ) THEN
  322:                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  323:                CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1,
  324:      $                     ZERO, AP( KC+1 ), 1 )
  325:                AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ),
  326:      $                    1 )
  327:             END IF
  328:             KSTEP = 1
  329:          ELSE
  330: *
  331: *           2 x 2 diagonal block
  332: *
  333: *           Invert the diagonal block.
  334: *
  335:             T = AP( KCNEXT+1 )
  336:             AK = AP( KCNEXT ) / T
  337:             AKP1 = AP( KC ) / T
  338:             AKKP1 = AP( KCNEXT+1 ) / T
  339:             D = T*( AK*AKP1-ONE )
  340:             AP( KCNEXT ) = AKP1 / D
  341:             AP( KC ) = AK / D
  342:             AP( KCNEXT+1 ) = -AKKP1 / D
  343: *
  344: *           Compute columns K-1 and K of the inverse.
  345: *
  346:             IF( K.LT.N ) THEN
  347:                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  348:                CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
  349:      $                     ZERO, AP( KC+1 ), 1 )
  350:                AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ),
  351:      $                    1 )
  352:                AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
  353:      $                          ZDOTU( N-K, AP( KC+1 ), 1,
  354:      $                          AP( KCNEXT+2 ), 1 )
  355:                CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
  356:                CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
  357:      $                     ZERO, AP( KCNEXT+2 ), 1 )
  358:                AP( KCNEXT ) = AP( KCNEXT ) -
  359:      $                        ZDOTU( N-K, WORK, 1, AP( KCNEXT+2 ), 1 )
  360:             END IF
  361:             KSTEP = 2
  362:             KCNEXT = KCNEXT - ( N-K+3 )
  363:          END IF
  364: *
  365:          KP = ABS( IPIV( K ) )
  366:          IF( KP.NE.K ) THEN
  367: *
  368: *           Interchange rows and columns K and KP in the trailing
  369: *           submatrix A(k-1:n,k-1:n)
  370: *
  371:             KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
  372:             IF( KP.LT.N )
  373:      $         CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
  374:             KX = KC + KP - K
  375:             DO 70 J = K + 1, KP - 1
  376:                KX = KX + N - J + 1
  377:                TEMP = AP( KC+J-K )
  378:                AP( KC+J-K ) = AP( KX )
  379:                AP( KX ) = TEMP
  380:    70       CONTINUE
  381:             TEMP = AP( KC )
  382:             AP( KC ) = AP( KPC )
  383:             AP( KPC ) = TEMP
  384:             IF( KSTEP.EQ.2 ) THEN
  385:                TEMP = AP( KC-N+K-1 )
  386:                AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
  387:                AP( KC-N+KP-1 ) = TEMP
  388:             END IF
  389:          END IF
  390: *
  391:          K = K - KSTEP
  392:          KC = KCNEXT
  393:          GO TO 60
  394:    80    CONTINUE
  395:       END IF
  396: *
  397:       RETURN
  398: *
  399: *     End of ZSPTRI
  400: *
  401:       END

CVSweb interface <joel.bertrand@systella.fr>