File:  [local] / rpl / lapack / lapack / zsptri.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:44 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       COMPLEX*16         AP( * ), WORK( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZSPTRI computes the inverse of a complex symmetric indefinite matrix
   21: *  A in packed storage using the factorization A = U*D*U**T or
   22: *  A = L*D*L**T computed by ZSPTRF.
   23: *
   24: *  Arguments
   25: *  =========
   26: *
   27: *  UPLO    (input) CHARACTER*1
   28: *          Specifies whether the details of the factorization are stored
   29: *          as an upper or lower triangular matrix.
   30: *          = 'U':  Upper triangular, form is A = U*D*U**T;
   31: *          = 'L':  Lower triangular, form is A = L*D*L**T.
   32: *
   33: *  N       (input) INTEGER
   34: *          The order of the matrix A.  N >= 0.
   35: *
   36: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
   37: *          On entry, the block diagonal matrix D and the multipliers
   38: *          used to obtain the factor U or L as computed by ZSPTRF,
   39: *          stored as a packed triangular matrix.
   40: *
   41: *          On exit, if INFO = 0, the (symmetric) inverse of the original
   42: *          matrix, stored as a packed triangular matrix. The j-th column
   43: *          of inv(A) is stored in the array AP as follows:
   44: *          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
   45: *          if UPLO = 'L',
   46: *             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
   47: *
   48: *  IPIV    (input) INTEGER array, dimension (N)
   49: *          Details of the interchanges and the block structure of D
   50: *          as determined by ZSPTRF.
   51: *
   52: *  WORK    (workspace) COMPLEX*16 array, dimension (N)
   53: *
   54: *  INFO    (output) INTEGER
   55: *          = 0: successful exit
   56: *          < 0: if INFO = -i, the i-th argument had an illegal value
   57: *          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
   58: *               inverse could not be computed.
   59: *
   60: *  =====================================================================
   61: *
   62: *     .. Parameters ..
   63:       COMPLEX*16         ONE, ZERO
   64:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
   65:      $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
   66: *     ..
   67: *     .. Local Scalars ..
   68:       LOGICAL            UPPER
   69:       INTEGER            J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
   70:       COMPLEX*16         AK, AKKP1, AKP1, D, T, TEMP
   71: *     ..
   72: *     .. External Functions ..
   73:       LOGICAL            LSAME
   74:       COMPLEX*16         ZDOTU
   75:       EXTERNAL           LSAME, ZDOTU
   76: *     ..
   77: *     .. External Subroutines ..
   78:       EXTERNAL           XERBLA, ZCOPY, ZSPMV, ZSWAP
   79: *     ..
   80: *     .. Intrinsic Functions ..
   81:       INTRINSIC          ABS
   82: *     ..
   83: *     .. Executable Statements ..
   84: *
   85: *     Test the input parameters.
   86: *
   87:       INFO = 0
   88:       UPPER = LSAME( UPLO, 'U' )
   89:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
   90:          INFO = -1
   91:       ELSE IF( N.LT.0 ) THEN
   92:          INFO = -2
   93:       END IF
   94:       IF( INFO.NE.0 ) THEN
   95:          CALL XERBLA( 'ZSPTRI', -INFO )
   96:          RETURN
   97:       END IF
   98: *
   99: *     Quick return if possible
  100: *
  101:       IF( N.EQ.0 )
  102:      $   RETURN
  103: *
  104: *     Check that the diagonal matrix D is nonsingular.
  105: *
  106:       IF( UPPER ) THEN
  107: *
  108: *        Upper triangular storage: examine D from bottom to top
  109: *
  110:          KP = N*( N+1 ) / 2
  111:          DO 10 INFO = N, 1, -1
  112:             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  113:      $         RETURN
  114:             KP = KP - INFO
  115:    10    CONTINUE
  116:       ELSE
  117: *
  118: *        Lower triangular storage: examine D from top to bottom.
  119: *
  120:          KP = 1
  121:          DO 20 INFO = 1, N
  122:             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  123:      $         RETURN
  124:             KP = KP + N - INFO + 1
  125:    20    CONTINUE
  126:       END IF
  127:       INFO = 0
  128: *
  129:       IF( UPPER ) THEN
  130: *
  131: *        Compute inv(A) from the factorization A = U*D*U'.
  132: *
  133: *        K is the main loop index, increasing from 1 to N in steps of
  134: *        1 or 2, depending on the size of the diagonal blocks.
  135: *
  136:          K = 1
  137:          KC = 1
  138:    30    CONTINUE
  139: *
  140: *        If K > N, exit from loop.
  141: *
  142:          IF( K.GT.N )
  143:      $      GO TO 50
  144: *
  145:          KCNEXT = KC + K
  146:          IF( IPIV( K ).GT.0 ) THEN
  147: *
  148: *           1 x 1 diagonal block
  149: *
  150: *           Invert the diagonal block.
  151: *
  152:             AP( KC+K-1 ) = ONE / AP( KC+K-1 )
  153: *
  154: *           Compute column K of the inverse.
  155: *
  156:             IF( K.GT.1 ) THEN
  157:                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  158:                CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
  159:      $                     1 )
  160:                AP( KC+K-1 ) = AP( KC+K-1 ) -
  161:      $                        ZDOTU( K-1, WORK, 1, AP( KC ), 1 )
  162:             END IF
  163:             KSTEP = 1
  164:          ELSE
  165: *
  166: *           2 x 2 diagonal block
  167: *
  168: *           Invert the diagonal block.
  169: *
  170:             T = AP( KCNEXT+K-1 )
  171:             AK = AP( KC+K-1 ) / T
  172:             AKP1 = AP( KCNEXT+K ) / T
  173:             AKKP1 = AP( KCNEXT+K-1 ) / T
  174:             D = T*( AK*AKP1-ONE )
  175:             AP( KC+K-1 ) = AKP1 / D
  176:             AP( KCNEXT+K ) = AK / D
  177:             AP( KCNEXT+K-1 ) = -AKKP1 / D
  178: *
  179: *           Compute columns K and K+1 of the inverse.
  180: *
  181:             IF( K.GT.1 ) THEN
  182:                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  183:                CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
  184:      $                     1 )
  185:                AP( KC+K-1 ) = AP( KC+K-1 ) -
  186:      $                        ZDOTU( K-1, WORK, 1, AP( KC ), 1 )
  187:                AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
  188:      $                            ZDOTU( K-1, AP( KC ), 1, AP( KCNEXT ),
  189:      $                            1 )
  190:                CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
  191:                CALL ZSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO,
  192:      $                     AP( KCNEXT ), 1 )
  193:                AP( KCNEXT+K ) = AP( KCNEXT+K ) -
  194:      $                          ZDOTU( K-1, WORK, 1, AP( KCNEXT ), 1 )
  195:             END IF
  196:             KSTEP = 2
  197:             KCNEXT = KCNEXT + K + 1
  198:          END IF
  199: *
  200:          KP = ABS( IPIV( K ) )
  201:          IF( KP.NE.K ) THEN
  202: *
  203: *           Interchange rows and columns K and KP in the leading
  204: *           submatrix A(1:k+1,1:k+1)
  205: *
  206:             KPC = ( KP-1 )*KP / 2 + 1
  207:             CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
  208:             KX = KPC + KP - 1
  209:             DO 40 J = KP + 1, K - 1
  210:                KX = KX + J - 1
  211:                TEMP = AP( KC+J-1 )
  212:                AP( KC+J-1 ) = AP( KX )
  213:                AP( KX ) = TEMP
  214:    40       CONTINUE
  215:             TEMP = AP( KC+K-1 )
  216:             AP( KC+K-1 ) = AP( KPC+KP-1 )
  217:             AP( KPC+KP-1 ) = TEMP
  218:             IF( KSTEP.EQ.2 ) THEN
  219:                TEMP = AP( KC+K+K-1 )
  220:                AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
  221:                AP( KC+K+KP-1 ) = TEMP
  222:             END IF
  223:          END IF
  224: *
  225:          K = K + KSTEP
  226:          KC = KCNEXT
  227:          GO TO 30
  228:    50    CONTINUE
  229: *
  230:       ELSE
  231: *
  232: *        Compute inv(A) from the factorization A = L*D*L'.
  233: *
  234: *        K is the main loop index, increasing from 1 to N in steps of
  235: *        1 or 2, depending on the size of the diagonal blocks.
  236: *
  237:          NPP = N*( N+1 ) / 2
  238:          K = N
  239:          KC = NPP
  240:    60    CONTINUE
  241: *
  242: *        If K < 1, exit from loop.
  243: *
  244:          IF( K.LT.1 )
  245:      $      GO TO 80
  246: *
  247:          KCNEXT = KC - ( N-K+2 )
  248:          IF( IPIV( K ).GT.0 ) THEN
  249: *
  250: *           1 x 1 diagonal block
  251: *
  252: *           Invert the diagonal block.
  253: *
  254:             AP( KC ) = ONE / AP( KC )
  255: *
  256: *           Compute column K of the inverse.
  257: *
  258:             IF( K.LT.N ) THEN
  259:                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  260:                CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1,
  261:      $                     ZERO, AP( KC+1 ), 1 )
  262:                AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ),
  263:      $                    1 )
  264:             END IF
  265:             KSTEP = 1
  266:          ELSE
  267: *
  268: *           2 x 2 diagonal block
  269: *
  270: *           Invert the diagonal block.
  271: *
  272:             T = AP( KCNEXT+1 )
  273:             AK = AP( KCNEXT ) / T
  274:             AKP1 = AP( KC ) / T
  275:             AKKP1 = AP( KCNEXT+1 ) / T
  276:             D = T*( AK*AKP1-ONE )
  277:             AP( KCNEXT ) = AKP1 / D
  278:             AP( KC ) = AK / D
  279:             AP( KCNEXT+1 ) = -AKKP1 / D
  280: *
  281: *           Compute columns K-1 and K of the inverse.
  282: *
  283:             IF( K.LT.N ) THEN
  284:                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  285:                CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
  286:      $                     ZERO, AP( KC+1 ), 1 )
  287:                AP( KC ) = AP( KC ) - ZDOTU( N-K, WORK, 1, AP( KC+1 ),
  288:      $                    1 )
  289:                AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
  290:      $                          ZDOTU( N-K, AP( KC+1 ), 1,
  291:      $                          AP( KCNEXT+2 ), 1 )
  292:                CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
  293:                CALL ZSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
  294:      $                     ZERO, AP( KCNEXT+2 ), 1 )
  295:                AP( KCNEXT ) = AP( KCNEXT ) -
  296:      $                        ZDOTU( N-K, WORK, 1, AP( KCNEXT+2 ), 1 )
  297:             END IF
  298:             KSTEP = 2
  299:             KCNEXT = KCNEXT - ( N-K+3 )
  300:          END IF
  301: *
  302:          KP = ABS( IPIV( K ) )
  303:          IF( KP.NE.K ) THEN
  304: *
  305: *           Interchange rows and columns K and KP in the trailing
  306: *           submatrix A(k-1:n,k-1:n)
  307: *
  308:             KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
  309:             IF( KP.LT.N )
  310:      $         CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
  311:             KX = KC + KP - K
  312:             DO 70 J = K + 1, KP - 1
  313:                KX = KX + N - J + 1
  314:                TEMP = AP( KC+J-K )
  315:                AP( KC+J-K ) = AP( KX )
  316:                AP( KX ) = TEMP
  317:    70       CONTINUE
  318:             TEMP = AP( KC )
  319:             AP( KC ) = AP( KPC )
  320:             AP( KPC ) = TEMP
  321:             IF( KSTEP.EQ.2 ) THEN
  322:                TEMP = AP( KC-N+K-1 )
  323:                AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
  324:                AP( KC-N+KP-1 ) = TEMP
  325:             END IF
  326:          END IF
  327: *
  328:          K = K - KSTEP
  329:          KC = KCNEXT
  330:          GO TO 60
  331:    80    CONTINUE
  332:       END IF
  333: *
  334:       RETURN
  335: *
  336: *     End of ZSPTRI
  337: *
  338:       END

CVSweb interface <joel.bertrand@systella.fr>