File:  [local] / rpl / lapack / lapack / zsptrf.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:20 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZSPTRF( UPLO, N, AP, IPIV, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.3.1) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *  -- April 2011                                                      --
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       COMPLEX*16         AP( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZSPTRF computes the factorization of a complex symmetric matrix A
   21: *  stored in packed format using the Bunch-Kaufman diagonal pivoting
   22: *  method:
   23: *
   24: *     A = U*D*U**T  or  A = L*D*L**T
   25: *
   26: *  where U (or L) is a product of permutation and unit upper (lower)
   27: *  triangular matrices, and D is symmetric and block diagonal with
   28: *  1-by-1 and 2-by-2 diagonal blocks.
   29: *
   30: *  Arguments
   31: *  =========
   32: *
   33: *  UPLO    (input) CHARACTER*1
   34: *          = 'U':  Upper triangle of A is stored;
   35: *          = 'L':  Lower triangle of A is stored.
   36: *
   37: *  N       (input) INTEGER
   38: *          The order of the matrix A.  N >= 0.
   39: *
   40: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
   41: *          On entry, the upper or lower triangle of the symmetric matrix
   42: *          A, packed columnwise in a linear array.  The j-th column of A
   43: *          is stored in the array AP as follows:
   44: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   45: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   46: *
   47: *          On exit, the block diagonal matrix D and the multipliers used
   48: *          to obtain the factor U or L, stored as a packed triangular
   49: *          matrix overwriting A (see below for further details).
   50: *
   51: *  IPIV    (output) INTEGER array, dimension (N)
   52: *          Details of the interchanges and the block structure of D.
   53: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   54: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
   55: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   56: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   57: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   58: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   59: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   60: *
   61: *  INFO    (output) INTEGER
   62: *          = 0: successful exit
   63: *          < 0: if INFO = -i, the i-th argument had an illegal value
   64: *          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
   65: *               has been completed, but the block diagonal matrix D is
   66: *               exactly singular, and division by zero will occur if it
   67: *               is used to solve a system of equations.
   68: *
   69: *  Further Details
   70: *  ===============
   71: *
   72: *  5-96 - Based on modifications by J. Lewis, Boeing Computer Services
   73: *         Company
   74: *
   75: *  If UPLO = 'U', then A = U*D*U**T, where
   76: *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
   77: *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
   78: *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
   79: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
   80: *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
   81: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
   82: *
   83: *             (   I    v    0   )   k-s
   84: *     U(k) =  (   0    I    0   )   s
   85: *             (   0    0    I   )   n-k
   86: *                k-s   s   n-k
   87: *
   88: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
   89: *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
   90: *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
   91: *
   92: *  If UPLO = 'L', then A = L*D*L**T, where
   93: *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
   94: *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
   95: *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
   96: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
   97: *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
   98: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
   99: *
  100: *             (   I    0     0   )  k-1
  101: *     L(k) =  (   0    I     0   )  s
  102: *             (   0    v     I   )  n-k-s+1
  103: *                k-1   s  n-k-s+1
  104: *
  105: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  106: *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  107: *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  108: *
  109: *  =====================================================================
  110: *
  111: *     .. Parameters ..
  112:       DOUBLE PRECISION   ZERO, ONE
  113:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  114:       DOUBLE PRECISION   EIGHT, SEVTEN
  115:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  116:       COMPLEX*16         CONE
  117:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  118: *     ..
  119: *     .. Local Scalars ..
  120:       LOGICAL            UPPER
  121:       INTEGER            I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  122:      $                   KSTEP, KX, NPP
  123:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX
  124:       COMPLEX*16         D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, ZDUM
  125: *     ..
  126: *     .. External Functions ..
  127:       LOGICAL            LSAME
  128:       INTEGER            IZAMAX
  129:       EXTERNAL           LSAME, IZAMAX
  130: *     ..
  131: *     .. External Subroutines ..
  132:       EXTERNAL           XERBLA, ZSCAL, ZSPR, ZSWAP
  133: *     ..
  134: *     .. Intrinsic Functions ..
  135:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
  136: *     ..
  137: *     .. Statement Functions ..
  138:       DOUBLE PRECISION   CABS1
  139: *     ..
  140: *     .. Statement Function definitions ..
  141:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  142: *     ..
  143: *     .. Executable Statements ..
  144: *
  145: *     Test the input parameters.
  146: *
  147:       INFO = 0
  148:       UPPER = LSAME( UPLO, 'U' )
  149:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  150:          INFO = -1
  151:       ELSE IF( N.LT.0 ) THEN
  152:          INFO = -2
  153:       END IF
  154:       IF( INFO.NE.0 ) THEN
  155:          CALL XERBLA( 'ZSPTRF', -INFO )
  156:          RETURN
  157:       END IF
  158: *
  159: *     Initialize ALPHA for use in choosing pivot block size.
  160: *
  161:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  162: *
  163:       IF( UPPER ) THEN
  164: *
  165: *        Factorize A as U*D*U**T using the upper triangle of A
  166: *
  167: *        K is the main loop index, decreasing from N to 1 in steps of
  168: *        1 or 2
  169: *
  170:          K = N
  171:          KC = ( N-1 )*N / 2 + 1
  172:    10    CONTINUE
  173:          KNC = KC
  174: *
  175: *        If K < 1, exit from loop
  176: *
  177:          IF( K.LT.1 )
  178:      $      GO TO 110
  179:          KSTEP = 1
  180: *
  181: *        Determine rows and columns to be interchanged and whether
  182: *        a 1-by-1 or 2-by-2 pivot block will be used
  183: *
  184:          ABSAKK = CABS1( AP( KC+K-1 ) )
  185: *
  186: *        IMAX is the row-index of the largest off-diagonal element in
  187: *        column K, and COLMAX is its absolute value
  188: *
  189:          IF( K.GT.1 ) THEN
  190:             IMAX = IZAMAX( K-1, AP( KC ), 1 )
  191:             COLMAX = CABS1( AP( KC+IMAX-1 ) )
  192:          ELSE
  193:             COLMAX = ZERO
  194:          END IF
  195: *
  196:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  197: *
  198: *           Column K is zero: set INFO and continue
  199: *
  200:             IF( INFO.EQ.0 )
  201:      $         INFO = K
  202:             KP = K
  203:          ELSE
  204:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  205: *
  206: *              no interchange, use 1-by-1 pivot block
  207: *
  208:                KP = K
  209:             ELSE
  210: *
  211:                ROWMAX = ZERO
  212:                JMAX = IMAX
  213:                KX = IMAX*( IMAX+1 ) / 2 + IMAX
  214:                DO 20 J = IMAX + 1, K
  215:                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  216:                      ROWMAX = CABS1( AP( KX ) )
  217:                      JMAX = J
  218:                   END IF
  219:                   KX = KX + J
  220:    20          CONTINUE
  221:                KPC = ( IMAX-1 )*IMAX / 2 + 1
  222:                IF( IMAX.GT.1 ) THEN
  223:                   JMAX = IZAMAX( IMAX-1, AP( KPC ), 1 )
  224:                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-1 ) ) )
  225:                END IF
  226: *
  227:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  228: *
  229: *                 no interchange, use 1-by-1 pivot block
  230: *
  231:                   KP = K
  232:                ELSE IF( CABS1( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
  233: *
  234: *                 interchange rows and columns K and IMAX, use 1-by-1
  235: *                 pivot block
  236: *
  237:                   KP = IMAX
  238:                ELSE
  239: *
  240: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  241: *                 pivot block
  242: *
  243:                   KP = IMAX
  244:                   KSTEP = 2
  245:                END IF
  246:             END IF
  247: *
  248:             KK = K - KSTEP + 1
  249:             IF( KSTEP.EQ.2 )
  250:      $         KNC = KNC - K + 1
  251:             IF( KP.NE.KK ) THEN
  252: *
  253: *              Interchange rows and columns KK and KP in the leading
  254: *              submatrix A(1:k,1:k)
  255: *
  256:                CALL ZSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  257:                KX = KPC + KP - 1
  258:                DO 30 J = KP + 1, KK - 1
  259:                   KX = KX + J - 1
  260:                   T = AP( KNC+J-1 )
  261:                   AP( KNC+J-1 ) = AP( KX )
  262:                   AP( KX ) = T
  263:    30          CONTINUE
  264:                T = AP( KNC+KK-1 )
  265:                AP( KNC+KK-1 ) = AP( KPC+KP-1 )
  266:                AP( KPC+KP-1 ) = T
  267:                IF( KSTEP.EQ.2 ) THEN
  268:                   T = AP( KC+K-2 )
  269:                   AP( KC+K-2 ) = AP( KC+KP-1 )
  270:                   AP( KC+KP-1 ) = T
  271:                END IF
  272:             END IF
  273: *
  274: *           Update the leading submatrix
  275: *
  276:             IF( KSTEP.EQ.1 ) THEN
  277: *
  278: *              1-by-1 pivot block D(k): column k now holds
  279: *
  280: *              W(k) = U(k)*D(k)
  281: *
  282: *              where U(k) is the k-th column of U
  283: *
  284: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  285: *
  286: *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  287: *
  288:                R1 = CONE / AP( KC+K-1 )
  289:                CALL ZSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  290: *
  291: *              Store U(k) in column k
  292: *
  293:                CALL ZSCAL( K-1, R1, AP( KC ), 1 )
  294:             ELSE
  295: *
  296: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  297: *
  298: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  299: *
  300: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  301: *              of U
  302: *
  303: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  304: *
  305: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  306: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  307: *
  308:                IF( K.GT.2 ) THEN
  309: *
  310:                   D12 = AP( K-1+( K-1 )*K / 2 )
  311:                   D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
  312:                   D11 = AP( K+( K-1 )*K / 2 ) / D12
  313:                   T = CONE / ( D11*D22-CONE )
  314:                   D12 = T / D12
  315: *
  316:                   DO 50 J = K - 2, 1, -1
  317:                      WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  318:      $                      AP( J+( K-1 )*K / 2 ) )
  319:                      WK = D12*( D22*AP( J+( K-1 )*K / 2 )-
  320:      $                    AP( J+( K-2 )*( K-1 ) / 2 ) )
  321:                      DO 40 I = J, 1, -1
  322:                         AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  323:      $                     AP( I+( K-1 )*K / 2 )*WK -
  324:      $                     AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
  325:    40                CONTINUE
  326:                      AP( J+( K-1 )*K / 2 ) = WK
  327:                      AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  328:    50             CONTINUE
  329: *
  330:                END IF
  331:             END IF
  332:          END IF
  333: *
  334: *        Store details of the interchanges in IPIV
  335: *
  336:          IF( KSTEP.EQ.1 ) THEN
  337:             IPIV( K ) = KP
  338:          ELSE
  339:             IPIV( K ) = -KP
  340:             IPIV( K-1 ) = -KP
  341:          END IF
  342: *
  343: *        Decrease K and return to the start of the main loop
  344: *
  345:          K = K - KSTEP
  346:          KC = KNC - K
  347:          GO TO 10
  348: *
  349:       ELSE
  350: *
  351: *        Factorize A as L*D*L**T using the lower triangle of A
  352: *
  353: *        K is the main loop index, increasing from 1 to N in steps of
  354: *        1 or 2
  355: *
  356:          K = 1
  357:          KC = 1
  358:          NPP = N*( N+1 ) / 2
  359:    60    CONTINUE
  360:          KNC = KC
  361: *
  362: *        If K > N, exit from loop
  363: *
  364:          IF( K.GT.N )
  365:      $      GO TO 110
  366:          KSTEP = 1
  367: *
  368: *        Determine rows and columns to be interchanged and whether
  369: *        a 1-by-1 or 2-by-2 pivot block will be used
  370: *
  371:          ABSAKK = CABS1( AP( KC ) )
  372: *
  373: *        IMAX is the row-index of the largest off-diagonal element in
  374: *        column K, and COLMAX is its absolute value
  375: *
  376:          IF( K.LT.N ) THEN
  377:             IMAX = K + IZAMAX( N-K, AP( KC+1 ), 1 )
  378:             COLMAX = CABS1( AP( KC+IMAX-K ) )
  379:          ELSE
  380:             COLMAX = ZERO
  381:          END IF
  382: *
  383:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  384: *
  385: *           Column K is zero: set INFO and continue
  386: *
  387:             IF( INFO.EQ.0 )
  388:      $         INFO = K
  389:             KP = K
  390:          ELSE
  391:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  392: *
  393: *              no interchange, use 1-by-1 pivot block
  394: *
  395:                KP = K
  396:             ELSE
  397: *
  398: *              JMAX is the column-index of the largest off-diagonal
  399: *              element in row IMAX, and ROWMAX is its absolute value
  400: *
  401:                ROWMAX = ZERO
  402:                KX = KC + IMAX - K
  403:                DO 70 J = K, IMAX - 1
  404:                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  405:                      ROWMAX = CABS1( AP( KX ) )
  406:                      JMAX = J
  407:                   END IF
  408:                   KX = KX + N - J
  409:    70          CONTINUE
  410:                KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  411:                IF( IMAX.LT.N ) THEN
  412:                   JMAX = IMAX + IZAMAX( N-IMAX, AP( KPC+1 ), 1 )
  413:                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-IMAX ) ) )
  414:                END IF
  415: *
  416:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  417: *
  418: *                 no interchange, use 1-by-1 pivot block
  419: *
  420:                   KP = K
  421:                ELSE IF( CABS1( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
  422: *
  423: *                 interchange rows and columns K and IMAX, use 1-by-1
  424: *                 pivot block
  425: *
  426:                   KP = IMAX
  427:                ELSE
  428: *
  429: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  430: *                 pivot block
  431: *
  432:                   KP = IMAX
  433:                   KSTEP = 2
  434:                END IF
  435:             END IF
  436: *
  437:             KK = K + KSTEP - 1
  438:             IF( KSTEP.EQ.2 )
  439:      $         KNC = KNC + N - K + 1
  440:             IF( KP.NE.KK ) THEN
  441: *
  442: *              Interchange rows and columns KK and KP in the trailing
  443: *              submatrix A(k:n,k:n)
  444: *
  445:                IF( KP.LT.N )
  446:      $            CALL ZSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  447:      $                        1 )
  448:                KX = KNC + KP - KK
  449:                DO 80 J = KK + 1, KP - 1
  450:                   KX = KX + N - J + 1
  451:                   T = AP( KNC+J-KK )
  452:                   AP( KNC+J-KK ) = AP( KX )
  453:                   AP( KX ) = T
  454:    80          CONTINUE
  455:                T = AP( KNC )
  456:                AP( KNC ) = AP( KPC )
  457:                AP( KPC ) = T
  458:                IF( KSTEP.EQ.2 ) THEN
  459:                   T = AP( KC+1 )
  460:                   AP( KC+1 ) = AP( KC+KP-K )
  461:                   AP( KC+KP-K ) = T
  462:                END IF
  463:             END IF
  464: *
  465: *           Update the trailing submatrix
  466: *
  467:             IF( KSTEP.EQ.1 ) THEN
  468: *
  469: *              1-by-1 pivot block D(k): column k now holds
  470: *
  471: *              W(k) = L(k)*D(k)
  472: *
  473: *              where L(k) is the k-th column of L
  474: *
  475:                IF( K.LT.N ) THEN
  476: *
  477: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  478: *
  479: *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  480: *
  481:                   R1 = CONE / AP( KC )
  482:                   CALL ZSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  483:      $                       AP( KC+N-K+1 ) )
  484: *
  485: *                 Store L(k) in column K
  486: *
  487:                   CALL ZSCAL( N-K, R1, AP( KC+1 ), 1 )
  488:                END IF
  489:             ELSE
  490: *
  491: *              2-by-2 pivot block D(k): columns K and K+1 now hold
  492: *
  493: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  494: *
  495: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  496: *              of L
  497: *
  498:                IF( K.LT.N-1 ) THEN
  499: *
  500: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  501: *
  502: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
  503: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
  504: *
  505: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  506: *                 columns of L
  507: *
  508:                   D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 )
  509:                   D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21
  510:                   D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21
  511:                   T = CONE / ( D11*D22-CONE )
  512:                   D21 = T / D21
  513: *
  514:                   DO 100 J = K + 2, N
  515:                      WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-
  516:      $                    AP( J+K*( 2*N-K-1 ) / 2 ) )
  517:                      WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  518:      $                      AP( J+( K-1 )*( 2*N-K ) / 2 ) )
  519:                      DO 90 I = J, N
  520:                         AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  521:      $                     ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  522:      $                     2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1
  523:    90                CONTINUE
  524:                      AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  525:                      AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  526:   100             CONTINUE
  527:                END IF
  528:             END IF
  529:          END IF
  530: *
  531: *        Store details of the interchanges in IPIV
  532: *
  533:          IF( KSTEP.EQ.1 ) THEN
  534:             IPIV( K ) = KP
  535:          ELSE
  536:             IPIV( K ) = -KP
  537:             IPIV( K+1 ) = -KP
  538:          END IF
  539: *
  540: *        Increase K and return to the start of the main loop
  541: *
  542:          K = K + KSTEP
  543:          KC = KNC + N - K + 2
  544:          GO TO 60
  545: *
  546:       END IF
  547: *
  548:   110 CONTINUE
  549:       RETURN
  550: *
  551: *     End of ZSPTRF
  552: *
  553:       END

CVSweb interface <joel.bertrand@systella.fr>